{"title":"硝基脂肪酸信号传导:炎症性疾病的治疗潜力","authors":"Homero Rubbo, Andrés Trostchansky","doi":"10.1016/j.rbc.2024.100027","DOIUrl":null,"url":null,"abstract":"<div><p>This review explores the interaction between nitric oxide-derived reactive species and unsaturated fatty acids, leading to the formation of electrophilic nitroalkenes, named nitro-fatty acids (NO<sub>2</sub>-FA). These species serve as endogenously produced anti-inflammatory signaling mediators, demonstrating protective effects in pre-clinical animal disease models. The discussion herein focuses on the cell signaling actions of NO<sub>2</sub>-FA, drawing insights from both existing knowledge and recent <em>in vivo</em> data. Additionally, this review addresses the potential pharmacological utility of NO<sub>2</sub>-FA and ongoing trials, highlighting their promising prospects based on the gathered information.</p></div>","PeriodicalId":101065,"journal":{"name":"Redox Biochemistry and Chemistry","volume":"8 ","pages":"Article 100027"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773176624000087/pdfft?md5=851897c0771f768914061f5f1797696a&pid=1-s2.0-S2773176624000087-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Nitro-fatty acid signaling: Therapeutic potential in inflammatory diseases\",\"authors\":\"Homero Rubbo, Andrés Trostchansky\",\"doi\":\"10.1016/j.rbc.2024.100027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This review explores the interaction between nitric oxide-derived reactive species and unsaturated fatty acids, leading to the formation of electrophilic nitroalkenes, named nitro-fatty acids (NO<sub>2</sub>-FA). These species serve as endogenously produced anti-inflammatory signaling mediators, demonstrating protective effects in pre-clinical animal disease models. The discussion herein focuses on the cell signaling actions of NO<sub>2</sub>-FA, drawing insights from both existing knowledge and recent <em>in vivo</em> data. Additionally, this review addresses the potential pharmacological utility of NO<sub>2</sub>-FA and ongoing trials, highlighting their promising prospects based on the gathered information.</p></div>\",\"PeriodicalId\":101065,\"journal\":{\"name\":\"Redox Biochemistry and Chemistry\",\"volume\":\"8 \",\"pages\":\"Article 100027\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2773176624000087/pdfft?md5=851897c0771f768914061f5f1797696a&pid=1-s2.0-S2773176624000087-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Biochemistry and Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773176624000087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biochemistry and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773176624000087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nitro-fatty acid signaling: Therapeutic potential in inflammatory diseases
This review explores the interaction between nitric oxide-derived reactive species and unsaturated fatty acids, leading to the formation of electrophilic nitroalkenes, named nitro-fatty acids (NO2-FA). These species serve as endogenously produced anti-inflammatory signaling mediators, demonstrating protective effects in pre-clinical animal disease models. The discussion herein focuses on the cell signaling actions of NO2-FA, drawing insights from both existing knowledge and recent in vivo data. Additionally, this review addresses the potential pharmacological utility of NO2-FA and ongoing trials, highlighting their promising prospects based on the gathered information.