添加重元素化合物提高火花等离子烧结法合成的硅化铬的热电性能

IF 2.4 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Manju Yadav , Naval Kishor Upadhyay , Kishor Kumar Johari , Radhey Shyam , Sanjay R. Dhakate , Bhasker Gahtori , Saravanan Muthiah
{"title":"添加重元素化合物提高火花等离子烧结法合成的硅化铬的热电性能","authors":"Manju Yadav ,&nbsp;Naval Kishor Upadhyay ,&nbsp;Kishor Kumar Johari ,&nbsp;Radhey Shyam ,&nbsp;Sanjay R. Dhakate ,&nbsp;Bhasker Gahtori ,&nbsp;Saravanan Muthiah","doi":"10.1016/j.cap.2024.05.009","DOIUrl":null,"url":null,"abstract":"<div><p>Silicide-based materials drive great potential in developing mid-temperature range thermoelectric generators (TEGs) applications. However, realizing the efficient and stable silicide materials is still a constraint for its real potential device applications. Chromium silicide will likely become p-type thermoelectric materials in this direction for thermoelectric power generation applications. However, high thermal conductivity values impede the figure-of-merit (<em>zT</em>). The present work adopts the chromium silicide, adding different weight percentages of well-known ZrCoSbSn compounds employing the compaction spark plasma sintering (SPS) technique. By adopting these combinations, the thermal conductivity is significantly reduced by enhanced scattering of heat-carrying phonons by multiple interfaces. Also, the maximum power factor value of ≃ 2.1 × 10<sup>−3</sup> W/mK<sup>2</sup> is achieved by employing a CrSi<sub>2</sub> -ZrCoSbSn compound addition. The enhanced figure-of-merit value (<em>zT</em>) ≃ 0.26 is realized in the temperature at 623 K for the CrSi<sub>2</sub>-5wt% ZrCoSbSn compound material.</p></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"64 ","pages":"Pages 34-39"},"PeriodicalIF":2.4000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heavy elemental compound addition enhancing thermoelectric performance of Chromium Silicide synthesized by Spark plasma sintering\",\"authors\":\"Manju Yadav ,&nbsp;Naval Kishor Upadhyay ,&nbsp;Kishor Kumar Johari ,&nbsp;Radhey Shyam ,&nbsp;Sanjay R. Dhakate ,&nbsp;Bhasker Gahtori ,&nbsp;Saravanan Muthiah\",\"doi\":\"10.1016/j.cap.2024.05.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Silicide-based materials drive great potential in developing mid-temperature range thermoelectric generators (TEGs) applications. However, realizing the efficient and stable silicide materials is still a constraint for its real potential device applications. Chromium silicide will likely become p-type thermoelectric materials in this direction for thermoelectric power generation applications. However, high thermal conductivity values impede the figure-of-merit (<em>zT</em>). The present work adopts the chromium silicide, adding different weight percentages of well-known ZrCoSbSn compounds employing the compaction spark plasma sintering (SPS) technique. By adopting these combinations, the thermal conductivity is significantly reduced by enhanced scattering of heat-carrying phonons by multiple interfaces. Also, the maximum power factor value of ≃ 2.1 × 10<sup>−3</sup> W/mK<sup>2</sup> is achieved by employing a CrSi<sub>2</sub> -ZrCoSbSn compound addition. The enhanced figure-of-merit value (<em>zT</em>) ≃ 0.26 is realized in the temperature at 623 K for the CrSi<sub>2</sub>-5wt% ZrCoSbSn compound material.</p></div>\",\"PeriodicalId\":11037,\"journal\":{\"name\":\"Current Applied Physics\",\"volume\":\"64 \",\"pages\":\"Pages 34-39\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567173924000981\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173924000981","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

硅化物基材料在开发中温范围热电发电机(TEG)应用方面具有巨大潜力。然而,实现高效稳定的硅化物材料仍是其真正潜在设备应用的一个制约因素。在这个方向上,铬硅化物将有可能成为热电发电应用中的 p 型热电材料。然而,高热导率值阻碍了其性能系数(zT)。本研究采用火花等离子烧结(SPS)技术,在铬硅化物中加入不同重量百分比的知名 ZrCoSbSn 化合物。通过采用这些组合,增强了多个界面对载热声子的散射,从而显著降低了热导率。此外,通过添加 CrSi2 -ZrCoSbSn 化合物,功率因数的最大值达到了 ≃ 2.1 × 10-3 W/mK2。CrSi2-5wt% ZrCoSbSn 化合物材料在 623 K 温度下的功率因数值 (zT) ≃ 0.26。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Heavy elemental compound addition enhancing thermoelectric performance of Chromium Silicide synthesized by Spark plasma sintering

Heavy elemental compound addition enhancing thermoelectric performance of Chromium Silicide synthesized by Spark plasma sintering

Heavy elemental compound addition enhancing thermoelectric performance of Chromium Silicide synthesized by Spark plasma sintering

Silicide-based materials drive great potential in developing mid-temperature range thermoelectric generators (TEGs) applications. However, realizing the efficient and stable silicide materials is still a constraint for its real potential device applications. Chromium silicide will likely become p-type thermoelectric materials in this direction for thermoelectric power generation applications. However, high thermal conductivity values impede the figure-of-merit (zT). The present work adopts the chromium silicide, adding different weight percentages of well-known ZrCoSbSn compounds employing the compaction spark plasma sintering (SPS) technique. By adopting these combinations, the thermal conductivity is significantly reduced by enhanced scattering of heat-carrying phonons by multiple interfaces. Also, the maximum power factor value of ≃ 2.1 × 10−3 W/mK2 is achieved by employing a CrSi2 -ZrCoSbSn compound addition. The enhanced figure-of-merit value (zT) ≃ 0.26 is realized in the temperature at 623 K for the CrSi2-5wt% ZrCoSbSn compound material.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Applied Physics
Current Applied Physics 物理-材料科学:综合
CiteScore
4.80
自引率
0.00%
发文量
213
审稿时长
33 days
期刊介绍: Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications. Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques. Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals. Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review. The Journal is owned by the Korean Physical Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信