Christoph Schünemann , Tim Felix Kriesten , Uta Moderow , Astrid Ziemann
{"title":"室外热适应对室内热条件的影响--结合微尺度城市气候和建筑性能模拟","authors":"Christoph Schünemann , Tim Felix Kriesten , Uta Moderow , Astrid Ziemann","doi":"10.1016/j.crm.2024.100615","DOIUrl":null,"url":null,"abstract":"<div><p>To what extent can outdoor heat adaptation measures in urban districts help to reduce high indoor temperatures in buildings and thus enhance indoor thermal conditions? To answer this question microscale meteorological simulation (MMS) and building performance simulation (BPS) are combined in a model chain approach. Two existing residential German districts with different urban designs are modelled in the MMS tool ENVI-met. For both districts, a representative residential building (one from the Wilhelminian period and one large panel construction type) is modelled using the BPS tool IDA-ICE. Different scenarios of heat adaptation measures are applied to analyse how changes in urban and building design (e.g. white (cool) roofs (high albedo), white traffic areas (high albedo), intensive green roofs, urban trees, facade insulation or facade greening) affect outdoor and indoor temperatures. The MMS results highlight that the district from the Wilhelminian period is less heat resilient and that the efficacy of heat adaptation measures on heat reduction in open space depends on the urban design and the daytime. Regarding the efficacy of heat adaptation measures on indoor thermal conditions, our findings indicate that the larger share of the indoor cooling effect is not caused by the outdoor air temperature reduction by the outdoor heat adaptation measures but by the change of the building physics in the BPS model (e.g. changing the surface reflectance of the white roofs). White roofs and intensive green roofs show the largest cooling effect by reducing the operative room temperature by more than 1 Kelvin. Our findings also demonstrate that facade insulation can act as both, climate adaptation and mitigation measures.</p></div>","PeriodicalId":54226,"journal":{"name":"Climate Risk Management","volume":"44 ","pages":"Article 100615"},"PeriodicalIF":4.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212096324000329/pdfft?md5=1cc41bd0813e2c7bbb3232470132b1d7&pid=1-s2.0-S2212096324000329-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Impact of outdoor heat adaptation on indoor thermal conditions – Combining microscale urban climate and building performance simulation\",\"authors\":\"Christoph Schünemann , Tim Felix Kriesten , Uta Moderow , Astrid Ziemann\",\"doi\":\"10.1016/j.crm.2024.100615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To what extent can outdoor heat adaptation measures in urban districts help to reduce high indoor temperatures in buildings and thus enhance indoor thermal conditions? To answer this question microscale meteorological simulation (MMS) and building performance simulation (BPS) are combined in a model chain approach. Two existing residential German districts with different urban designs are modelled in the MMS tool ENVI-met. For both districts, a representative residential building (one from the Wilhelminian period and one large panel construction type) is modelled using the BPS tool IDA-ICE. Different scenarios of heat adaptation measures are applied to analyse how changes in urban and building design (e.g. white (cool) roofs (high albedo), white traffic areas (high albedo), intensive green roofs, urban trees, facade insulation or facade greening) affect outdoor and indoor temperatures. The MMS results highlight that the district from the Wilhelminian period is less heat resilient and that the efficacy of heat adaptation measures on heat reduction in open space depends on the urban design and the daytime. Regarding the efficacy of heat adaptation measures on indoor thermal conditions, our findings indicate that the larger share of the indoor cooling effect is not caused by the outdoor air temperature reduction by the outdoor heat adaptation measures but by the change of the building physics in the BPS model (e.g. changing the surface reflectance of the white roofs). White roofs and intensive green roofs show the largest cooling effect by reducing the operative room temperature by more than 1 Kelvin. Our findings also demonstrate that facade insulation can act as both, climate adaptation and mitigation measures.</p></div>\",\"PeriodicalId\":54226,\"journal\":{\"name\":\"Climate Risk Management\",\"volume\":\"44 \",\"pages\":\"Article 100615\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212096324000329/pdfft?md5=1cc41bd0813e2c7bbb3232470132b1d7&pid=1-s2.0-S2212096324000329-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climate Risk Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212096324000329\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate Risk Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212096324000329","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Impact of outdoor heat adaptation on indoor thermal conditions – Combining microscale urban climate and building performance simulation
To what extent can outdoor heat adaptation measures in urban districts help to reduce high indoor temperatures in buildings and thus enhance indoor thermal conditions? To answer this question microscale meteorological simulation (MMS) and building performance simulation (BPS) are combined in a model chain approach. Two existing residential German districts with different urban designs are modelled in the MMS tool ENVI-met. For both districts, a representative residential building (one from the Wilhelminian period and one large panel construction type) is modelled using the BPS tool IDA-ICE. Different scenarios of heat adaptation measures are applied to analyse how changes in urban and building design (e.g. white (cool) roofs (high albedo), white traffic areas (high albedo), intensive green roofs, urban trees, facade insulation or facade greening) affect outdoor and indoor temperatures. The MMS results highlight that the district from the Wilhelminian period is less heat resilient and that the efficacy of heat adaptation measures on heat reduction in open space depends on the urban design and the daytime. Regarding the efficacy of heat adaptation measures on indoor thermal conditions, our findings indicate that the larger share of the indoor cooling effect is not caused by the outdoor air temperature reduction by the outdoor heat adaptation measures but by the change of the building physics in the BPS model (e.g. changing the surface reflectance of the white roofs). White roofs and intensive green roofs show the largest cooling effect by reducing the operative room temperature by more than 1 Kelvin. Our findings also demonstrate that facade insulation can act as both, climate adaptation and mitigation measures.
期刊介绍:
Climate Risk Management publishes original scientific contributions, state-of-the-art reviews and reports of practical experience on the use of knowledge and information regarding the consequences of climate variability and climate change in decision and policy making on climate change responses from the near- to long-term.
The concept of climate risk management refers to activities and methods that are used by individuals, organizations, and institutions to facilitate climate-resilient decision-making. Its objective is to promote sustainable development by maximizing the beneficial impacts of climate change responses and minimizing negative impacts across the full spectrum of geographies and sectors that are potentially affected by the changing climate.