Wenqing Yan, Jimena de la Vega, Özen Eroğlu, Lavinia Heisenberg, Deyi Wang
{"title":"大功率太阳光模拟紫外线诱导的自由基聚合:自引发和自交联","authors":"Wenqing Yan, Jimena de la Vega, Özen Eroğlu, Lavinia Heisenberg, Deyi Wang","doi":"10.1002/mame.202470009","DOIUrl":null,"url":null,"abstract":"<p><b>Front Cover</b>: High power, sunlight-simulated UV light induces radical polymerizations of (meth)acrylate-based monomers. During this process, mono-radicals can be generated through the H-abstraction mechanism, while bi-radicals can arise from photodissociation or oxygen initiation mechanisms. The generated free radicals facilitate self-initiation and self-crosslinking, rendering this technology efficient for synthesizing polymer networks without the need for added initiators or crosslinkers. This is reported by Wenqing Yan and co-workers in article 2399456.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 5","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202470009","citationCount":"0","resultStr":"{\"title\":\"High Power Sunlight-Simulated UV-Induced Radical Polymerization: Self-Initiation and Self-Crosslinking\",\"authors\":\"Wenqing Yan, Jimena de la Vega, Özen Eroğlu, Lavinia Heisenberg, Deyi Wang\",\"doi\":\"10.1002/mame.202470009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Front Cover</b>: High power, sunlight-simulated UV light induces radical polymerizations of (meth)acrylate-based monomers. During this process, mono-radicals can be generated through the H-abstraction mechanism, while bi-radicals can arise from photodissociation or oxygen initiation mechanisms. The generated free radicals facilitate self-initiation and self-crosslinking, rendering this technology efficient for synthesizing polymer networks without the need for added initiators or crosslinkers. This is reported by Wenqing Yan and co-workers in article 2399456.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":18151,\"journal\":{\"name\":\"Macromolecular Materials and Engineering\",\"volume\":\"309 5\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202470009\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Materials and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mame.202470009\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202470009","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
High Power Sunlight-Simulated UV-Induced Radical Polymerization: Self-Initiation and Self-Crosslinking
Front Cover: High power, sunlight-simulated UV light induces radical polymerizations of (meth)acrylate-based monomers. During this process, mono-radicals can be generated through the H-abstraction mechanism, while bi-radicals can arise from photodissociation or oxygen initiation mechanisms. The generated free radicals facilitate self-initiation and self-crosslinking, rendering this technology efficient for synthesizing polymer networks without the need for added initiators or crosslinkers. This is reported by Wenqing Yan and co-workers in article 2399456.
期刊介绍:
Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications.
Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science.
The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments.
ISSN: 1438-7492 (print). 1439-2054 (online).
Readership:Polymer scientists, chemists, physicists, materials scientists, engineers
Abstracting and Indexing Information:
CAS: Chemical Abstracts Service (ACS)
CCR Database (Clarivate Analytics)
Chemical Abstracts Service/SciFinder (ACS)
Chemistry Server Reaction Center (Clarivate Analytics)
ChemWeb (ChemIndustry.com)
Chimica Database (Elsevier)
COMPENDEX (Elsevier)
Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics)
Directory of Open Access Journals (DOAJ)
INSPEC (IET)
Journal Citation Reports/Science Edition (Clarivate Analytics)
Materials Science & Engineering Database (ProQuest)
PASCAL Database (INIST/CNRS)
Polymer Library (iSmithers RAPRA)
Reaction Citation Index (Clarivate Analytics)
Science Citation Index (Clarivate Analytics)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
SCOPUS (Elsevier)
Technology Collection (ProQuest)
Web of Science (Clarivate Analytics)