{"title":"一个超复变正则性的统一概念","authors":"Riccardo Ghiloni , Caterina Stoppato","doi":"10.1016/j.geomphys.2024.105219","DOIUrl":null,"url":null,"abstract":"<div><p>We define a very general notion of regularity for functions taking values in an alternative real ⁎-algebra. Over Clifford numbers, this notion subsumes the well-established notions of monogenic function and slice-monogenic function. Over quaternions, in addition to subsuming the notions of Fueter-regular function and of slice-regular function, it gives rise to an entirely new theory, which we develop in some detail.</p></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0393044024001207/pdfft?md5=8d470d5ac0915c71c54a27a10f9b1919&pid=1-s2.0-S0393044024001207-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A unified notion of regularity in one hypercomplex variable\",\"authors\":\"Riccardo Ghiloni , Caterina Stoppato\",\"doi\":\"10.1016/j.geomphys.2024.105219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We define a very general notion of regularity for functions taking values in an alternative real ⁎-algebra. Over Clifford numbers, this notion subsumes the well-established notions of monogenic function and slice-monogenic function. Over quaternions, in addition to subsuming the notions of Fueter-regular function and of slice-regular function, it gives rise to an entirely new theory, which we develop in some detail.</p></div>\",\"PeriodicalId\":55602,\"journal\":{\"name\":\"Journal of Geometry and Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0393044024001207/pdfft?md5=8d470d5ac0915c71c54a27a10f9b1919&pid=1-s2.0-S0393044024001207-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0393044024001207\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044024001207","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A unified notion of regularity in one hypercomplex variable
We define a very general notion of regularity for functions taking values in an alternative real ⁎-algebra. Over Clifford numbers, this notion subsumes the well-established notions of monogenic function and slice-monogenic function. Over quaternions, in addition to subsuming the notions of Fueter-regular function and of slice-regular function, it gives rise to an entirely new theory, which we develop in some detail.
期刊介绍:
The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields.
The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered.
The Journal covers the following areas of research:
Methods of:
• Algebraic and Differential Topology
• Algebraic Geometry
• Real and Complex Differential Geometry
• Riemannian Manifolds
• Symplectic Geometry
• Global Analysis, Analysis on Manifolds
• Geometric Theory of Differential Equations
• Geometric Control Theory
• Lie Groups and Lie Algebras
• Supermanifolds and Supergroups
• Discrete Geometry
• Spinors and Twistors
Applications to:
• Strings and Superstrings
• Noncommutative Topology and Geometry
• Quantum Groups
• Geometric Methods in Statistics and Probability
• Geometry Approaches to Thermodynamics
• Classical and Quantum Dynamical Systems
• Classical and Quantum Integrable Systems
• Classical and Quantum Mechanics
• Classical and Quantum Field Theory
• General Relativity
• Quantum Information
• Quantum Gravity