循环图和(强)可解图

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Daniel Lenz , Simon Puchert , Marcel Schmidt
{"title":"循环图和(强)可解图","authors":"Daniel Lenz ,&nbsp;Simon Puchert ,&nbsp;Marcel Schmidt","doi":"10.1016/j.matpur.2024.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>We develop a new approach to recurrence and the existence of non-constant harmonic functions on infinite weighted graphs. The approach is based on the capacity of subsets of metric boundaries with respect to intrinsic metrics. The main tool is a connection between polar sets in such boundaries and null sets of paths. This connection relies on suitably diverging functions of finite energy.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021782424000357/pdfft?md5=1428d47f064fd093764bfc8b1a049da0&pid=1-s2.0-S0021782424000357-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Recurrent and (strongly) resolvable graphs\",\"authors\":\"Daniel Lenz ,&nbsp;Simon Puchert ,&nbsp;Marcel Schmidt\",\"doi\":\"10.1016/j.matpur.2024.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We develop a new approach to recurrence and the existence of non-constant harmonic functions on infinite weighted graphs. The approach is based on the capacity of subsets of metric boundaries with respect to intrinsic metrics. The main tool is a connection between polar sets in such boundaries and null sets of paths. This connection relies on suitably diverging functions of finite energy.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0021782424000357/pdfft?md5=1428d47f064fd093764bfc8b1a049da0&pid=1-s2.0-S0021782424000357-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782424000357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们为无限加权图上非常数谐函数的递推和存在开发了一种新方法。该方法基于关于内在度量的度量边界子集的容量。主要工具是此类边界中的极值集与路径空集之间的联系。这种联系依赖于有限能量的适当发散函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recurrent and (strongly) resolvable graphs

We develop a new approach to recurrence and the existence of non-constant harmonic functions on infinite weighted graphs. The approach is based on the capacity of subsets of metric boundaries with respect to intrinsic metrics. The main tool is a connection between polar sets in such boundaries and null sets of paths. This connection relies on suitably diverging functions of finite energy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信