埃尔德斯-拉德马赫光谱定理

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Yongtao Li , Lu Lu , Yuejian Peng
{"title":"埃尔德斯-拉德马赫光谱定理","authors":"Yongtao Li ,&nbsp;Lu Lu ,&nbsp;Yuejian Peng","doi":"10.1016/j.aam.2024.102720","DOIUrl":null,"url":null,"abstract":"<div><p>A classical result of Erdős and Rademacher (1955) indicates a supersaturation phenomenon. It says that if <em>G</em> is a graph on <em>n</em> vertices with at least <span><math><mo>⌊</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>4</mn><mo>⌋</mo><mo>+</mo><mn>1</mn></math></span> edges, then <em>G</em> contains at least <span><math><mo>⌊</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></math></span> triangles. We prove a spectral version of Erdős–Rademacher's theorem. Moreover, Mubayi (2010) <span>[28]</span> extends the result of Erdős and Rademacher from a triangle to any color-critical graph. It is interesting to study the extension of Mubayi from a spectral perspective. However, it is not apparent to measure the increment on the spectral radius of a graph comparing to the traditional edge version (Mubayi's result). In this paper, we provide a way to measure the increment on the spectral radius of a graph and propose a spectral version on the counting problems for color-critical graphs.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A spectral Erdős-Rademacher theorem\",\"authors\":\"Yongtao Li ,&nbsp;Lu Lu ,&nbsp;Yuejian Peng\",\"doi\":\"10.1016/j.aam.2024.102720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A classical result of Erdős and Rademacher (1955) indicates a supersaturation phenomenon. It says that if <em>G</em> is a graph on <em>n</em> vertices with at least <span><math><mo>⌊</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>4</mn><mo>⌋</mo><mo>+</mo><mn>1</mn></math></span> edges, then <em>G</em> contains at least <span><math><mo>⌊</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></math></span> triangles. We prove a spectral version of Erdős–Rademacher's theorem. Moreover, Mubayi (2010) <span>[28]</span> extends the result of Erdős and Rademacher from a triangle to any color-critical graph. It is interesting to study the extension of Mubayi from a spectral perspective. However, it is not apparent to measure the increment on the spectral radius of a graph comparing to the traditional edge version (Mubayi's result). In this paper, we provide a way to measure the increment on the spectral radius of a graph and propose a spectral version on the counting problems for color-critical graphs.</p></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885824000526\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824000526","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

Erdős 和 Rademacher(1955 年)的一个经典结果指出了一种超饱和现象。它指出,如果 G 是 n 个顶点上至少有 ⌊n2/4⌋+1 条边的图,那么 G 至少包含 ⌊n/2⌋ 个三角形。我们证明了厄尔多斯-拉德马赫定理的光谱版本。此外,Mubayi (2010) [28] 将厄尔多斯和拉德马赫的结果从三角形扩展到任何颜色临界图。从光谱的角度研究 Mubayi 的扩展很有意思。然而,与传统的边缘版本(Mubayi 的结果)相比,测量图谱半径的增量并不明显。本文提供了一种测量图谱半径增量的方法,并就颜色临界图的计数问题提出了图谱版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A spectral Erdős-Rademacher theorem

A classical result of Erdős and Rademacher (1955) indicates a supersaturation phenomenon. It says that if G is a graph on n vertices with at least n2/4+1 edges, then G contains at least n/2 triangles. We prove a spectral version of Erdős–Rademacher's theorem. Moreover, Mubayi (2010) [28] extends the result of Erdős and Rademacher from a triangle to any color-critical graph. It is interesting to study the extension of Mubayi from a spectral perspective. However, it is not apparent to measure the increment on the spectral radius of a graph comparing to the traditional edge version (Mubayi's result). In this paper, we provide a way to measure the increment on the spectral radius of a graph and propose a spectral version on the counting problems for color-critical graphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信