穿刺球中全非线性方程的主特征值和特征函数

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Isabeau Birindelli , Françoise Demengel , Fabiana Leoni
{"title":"穿刺球中全非线性方程的主特征值和特征函数","authors":"Isabeau Birindelli ,&nbsp;Françoise Demengel ,&nbsp;Fabiana Leoni","doi":"10.1016/j.matpur.2024.04.004","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is devoted to the proof of the existence of the principal eigenvalue and related eigenfunctions for fully nonlinear uniformly elliptic equations posed in a punctured ball, in presence of a singular potential. More precisely, we analyze existence, uniqueness and regularity of solutions <span><math><mo>(</mo><msub><mrow><mover><mrow><mi>λ</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mi>γ</mi></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>)</mo></math></span> of the equation<span><span><span><math><mi>F</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>)</mo><mo>+</mo><msub><mrow><mover><mrow><mi>λ</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mi>γ</mi></mrow></msub><mfrac><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msub></mrow><mrow><msup><mrow><mi>r</mi></mrow><mrow><mi>γ</mi></mrow></msup></mrow></mfrac><mo>=</mo><mn>0</mn><mspace></mspace><mrow><mi>in</mi></mrow><mspace></mspace><mi>B</mi><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo><mo>,</mo><mspace></mspace><msub><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>=</mo><mn>0</mn><mspace></mspace><mrow><mi>on</mi></mrow><mspace></mspace><mo>∂</mo><mi>B</mi><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span></span></span> where <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span> in <span><math><mi>B</mi><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span> and <span><math><mi>γ</mi><mo>&gt;</mo><mn>0</mn></math></span>. We prove existence of radial solutions which are continuous on <span><math><mover><mrow><mi>B</mi><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mo>‾</mo></mover></math></span> in the case <span><math><mi>γ</mi><mo>&lt;</mo><mn>2</mn></math></span>, existence of unbounded solutions in the case <span><math><mi>γ</mi><mo>=</mo><mn>2</mn></math></span> and a non existence result for <span><math><mi>γ</mi><mo>&gt;</mo><mn>2</mn></math></span>. We also give, in the case of Pucci's operators, the explicit value of <span><math><msub><mrow><mover><mrow><mi>λ</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mn>2</mn></mrow></msub></math></span>, which generalizes the Hardy–Sobolev constant for the Laplacian.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Principal eigenvalues and eigenfunctions for fully nonlinear equations in punctured balls\",\"authors\":\"Isabeau Birindelli ,&nbsp;Françoise Demengel ,&nbsp;Fabiana Leoni\",\"doi\":\"10.1016/j.matpur.2024.04.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is devoted to the proof of the existence of the principal eigenvalue and related eigenfunctions for fully nonlinear uniformly elliptic equations posed in a punctured ball, in presence of a singular potential. More precisely, we analyze existence, uniqueness and regularity of solutions <span><math><mo>(</mo><msub><mrow><mover><mrow><mi>λ</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mi>γ</mi></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>)</mo></math></span> of the equation<span><span><span><math><mi>F</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>)</mo><mo>+</mo><msub><mrow><mover><mrow><mi>λ</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mi>γ</mi></mrow></msub><mfrac><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msub></mrow><mrow><msup><mrow><mi>r</mi></mrow><mrow><mi>γ</mi></mrow></msup></mrow></mfrac><mo>=</mo><mn>0</mn><mspace></mspace><mrow><mi>in</mi></mrow><mspace></mspace><mi>B</mi><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo><mo>,</mo><mspace></mspace><msub><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>=</mo><mn>0</mn><mspace></mspace><mrow><mi>on</mi></mrow><mspace></mspace><mo>∂</mo><mi>B</mi><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span></span></span> where <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span> in <span><math><mi>B</mi><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span> and <span><math><mi>γ</mi><mo>&gt;</mo><mn>0</mn></math></span>. We prove existence of radial solutions which are continuous on <span><math><mover><mrow><mi>B</mi><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mo>‾</mo></mover></math></span> in the case <span><math><mi>γ</mi><mo>&lt;</mo><mn>2</mn></math></span>, existence of unbounded solutions in the case <span><math><mi>γ</mi><mo>=</mo><mn>2</mn></math></span> and a non existence result for <span><math><mi>γ</mi><mo>&gt;</mo><mn>2</mn></math></span>. We also give, in the case of Pucci's operators, the explicit value of <span><math><msub><mrow><mover><mrow><mi>λ</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mn>2</mn></mrow></msub></math></span>, which generalizes the Hardy–Sobolev constant for the Laplacian.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782424000370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文致力于证明在奇异势存在的情况下,在点球中提出的全非线性均匀椭圆方程的主特征值和相关特征函数的存在性。更确切地说,我们分析了方程F(D2uγ)+λ¯γuγrγ=0 inB(0,1)∖{0},uγ=0 on∂B(0,1) 的解(λ¯γ,uγ)的存在性、唯一性和正则性,其中 uγ>0 in B(0,1)∖{0} 和 γ>0。我们证明了γ<2情况下在B(0,1)‾上连续的径向解的存在性,γ=2情况下无约束解的存在性,以及γ>2情况下的不存在性结果。 我们还给出了普奇算子情况下λ¯2的显式值,它概括了拉普拉斯常数的哈代-索博列夫常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Principal eigenvalues and eigenfunctions for fully nonlinear equations in punctured balls

This paper is devoted to the proof of the existence of the principal eigenvalue and related eigenfunctions for fully nonlinear uniformly elliptic equations posed in a punctured ball, in presence of a singular potential. More precisely, we analyze existence, uniqueness and regularity of solutions (λ¯γ,uγ) of the equationF(D2uγ)+λ¯γuγrγ=0inB(0,1){0},uγ=0onB(0,1) where uγ>0 in B(0,1){0} and γ>0. We prove existence of radial solutions which are continuous on B(0,1) in the case γ<2, existence of unbounded solutions in the case γ=2 and a non existence result for γ>2. We also give, in the case of Pucci's operators, the explicit value of λ¯2, which generalizes the Hardy–Sobolev constant for the Laplacian.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信