加入单宁酸的抗菌聚乙二醇基水凝胶海绵用于治疗伤口感染。

IF 4.4 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Basak Akin, Busra Akgul, Semra Tasdurmazli, Emrah Sefik Abamor, Tulin Ozbek, Berkay Ozcelik, Esra Su, Mehmet Murat Ozmen
{"title":"加入单宁酸的抗菌聚乙二醇基水凝胶海绵用于治疗伤口感染。","authors":"Basak Akin,&nbsp;Busra Akgul,&nbsp;Semra Tasdurmazli,&nbsp;Emrah Sefik Abamor,&nbsp;Tulin Ozbek,&nbsp;Berkay Ozcelik,&nbsp;Esra Su,&nbsp;Mehmet Murat Ozmen","doi":"10.1002/mabi.202400101","DOIUrl":null,"url":null,"abstract":"<p>Conventional wound dressings fail to provide features that can assist the healing process of chronic wounds. Multifunctional wound dressings address this issue by incorporating attributes including antibacterial and antioxidant activity, and the ability to enhance wound healing. Herein, polyethylene glycol (PEG)-based antibacterial hydrogel sponge dressings are prepared by a rapid and facile gas foaming method based on an acid chloride/alcohol reaction where tannic acid (TA) is included as a reactant to impart antibacterial efficacy as well as to enhance the mechanical properties of the samples. The results reveal that the TA-integrated sponges possess excellent antibacterial properties against both <i>Escherichia coli</i> and <i>Staphylococcus aureus</i> with approximately 6–8 log reduction in the microbial colony count after 6 h, indicating their high potential for management of infection-prone wounds. Compared to the control sample, TA incorporation increases the elastic modulus by twofold. As the samples also exhibit biocompatibility, antioxidant activity, and wound healing capacity, the novel TA-incorporated hydrogels can be an alternative to traditional wound dressings for wounds with low-to-moderate exudate.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mabi.202400101","citationCount":"0","resultStr":"{\"title\":\"Tannic Acid Incorporated Antibacterial Polyethylene Glycol Based Hydrogel Sponges for Management of Wound Infections\",\"authors\":\"Basak Akin,&nbsp;Busra Akgul,&nbsp;Semra Tasdurmazli,&nbsp;Emrah Sefik Abamor,&nbsp;Tulin Ozbek,&nbsp;Berkay Ozcelik,&nbsp;Esra Su,&nbsp;Mehmet Murat Ozmen\",\"doi\":\"10.1002/mabi.202400101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Conventional wound dressings fail to provide features that can assist the healing process of chronic wounds. Multifunctional wound dressings address this issue by incorporating attributes including antibacterial and antioxidant activity, and the ability to enhance wound healing. Herein, polyethylene glycol (PEG)-based antibacterial hydrogel sponge dressings are prepared by a rapid and facile gas foaming method based on an acid chloride/alcohol reaction where tannic acid (TA) is included as a reactant to impart antibacterial efficacy as well as to enhance the mechanical properties of the samples. The results reveal that the TA-integrated sponges possess excellent antibacterial properties against both <i>Escherichia coli</i> and <i>Staphylococcus aureus</i> with approximately 6–8 log reduction in the microbial colony count after 6 h, indicating their high potential for management of infection-prone wounds. Compared to the control sample, TA incorporation increases the elastic modulus by twofold. As the samples also exhibit biocompatibility, antioxidant activity, and wound healing capacity, the novel TA-incorporated hydrogels can be an alternative to traditional wound dressings for wounds with low-to-moderate exudate.</p>\",\"PeriodicalId\":18103,\"journal\":{\"name\":\"Macromolecular bioscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mabi.202400101\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular bioscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mabi.202400101\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mabi.202400101","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

传统的伤口敷料无法提供有助于慢性伤口愈合的功能。多功能伤口敷料可以解决这一问题,它具有抗菌、抗氧化和促进伤口愈合等特性。本文采用一种基于氯化酸/酒精反应的快速简便的气体发泡法制备了聚乙二醇基抗菌水凝胶海绵敷料,其中加入了单宁酸(TA)作为反应物,以增强抗菌功效并提高样品的机械性能。结果表明,掺入单宁酸的海绵对大肠杆菌和金黄色葡萄球菌都有很好的抗菌效果,6 小时后微生物菌落数减少了约 6-8 个对数,这表明它们在处理易感染伤口方面具有很大的潜力。与对照样品相比,TA 的加入使弹性模量增加了两倍。由于这些样品还具有生物相容性、抗氧化活性和伤口愈合能力,因此这种掺入了TA的新型水凝胶可以替代传统的伤口敷料,用于中低度渗出的伤口。本文受版权保护。保留所有权利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tannic Acid Incorporated Antibacterial Polyethylene Glycol Based Hydrogel Sponges for Management of Wound Infections

Tannic Acid Incorporated Antibacterial Polyethylene Glycol Based Hydrogel Sponges for Management of Wound Infections

Conventional wound dressings fail to provide features that can assist the healing process of chronic wounds. Multifunctional wound dressings address this issue by incorporating attributes including antibacterial and antioxidant activity, and the ability to enhance wound healing. Herein, polyethylene glycol (PEG)-based antibacterial hydrogel sponge dressings are prepared by a rapid and facile gas foaming method based on an acid chloride/alcohol reaction where tannic acid (TA) is included as a reactant to impart antibacterial efficacy as well as to enhance the mechanical properties of the samples. The results reveal that the TA-integrated sponges possess excellent antibacterial properties against both Escherichia coli and Staphylococcus aureus with approximately 6–8 log reduction in the microbial colony count after 6 h, indicating their high potential for management of infection-prone wounds. Compared to the control sample, TA incorporation increases the elastic modulus by twofold. As the samples also exhibit biocompatibility, antioxidant activity, and wound healing capacity, the novel TA-incorporated hydrogels can be an alternative to traditional wound dressings for wounds with low-to-moderate exudate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular bioscience
Macromolecular bioscience 生物-材料科学:生物材料
CiteScore
7.90
自引率
2.20%
发文量
211
审稿时长
1.5 months
期刊介绍: Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals. Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers. With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信