氧气对原核生物进化的根本影响--首先是酶抑制,其次是未受抑制的基本生物合成,第三是有氧呼吸。

IF 3.5 4区 生物学 Q1 Biochemistry, Genetics and Molecular Biology
Natalia Mrnjavac, Falk S. P. Nagies, Jessica L. E. Wimmer, Nils Kapust, Michael R. Knopp, Katharina Trost, Luca Modjewski, Nico Bremer, Marek Mentel, Mauro Degli Esposti, Itzhak Mizrahi, John F. Allen, William F. Martin
{"title":"氧气对原核生物进化的根本影响--首先是酶抑制,其次是未受抑制的基本生物合成,第三是有氧呼吸。","authors":"Natalia Mrnjavac,&nbsp;Falk S. P. Nagies,&nbsp;Jessica L. E. Wimmer,&nbsp;Nils Kapust,&nbsp;Michael R. Knopp,&nbsp;Katharina Trost,&nbsp;Luca Modjewski,&nbsp;Nico Bremer,&nbsp;Marek Mentel,&nbsp;Mauro Degli Esposti,&nbsp;Itzhak Mizrahi,&nbsp;John F. Allen,&nbsp;William F. Martin","doi":"10.1002/1873-3468.14906","DOIUrl":null,"url":null,"abstract":"<p>Molecular oxygen is a stable diradical. All O<sub>2</sub>-dependent enzymes employ a radical mechanism. Generated by cyanobacteria, O<sub>2</sub> started accumulating on Earth 2.4 billion years ago. Its evolutionary impact is traditionally sought in respiration and energy yield. We mapped 365 O<sub>2</sub>-dependent enzymatic reactions of prokaryotes to phylogenies for the corresponding 792 protein families. The main physiological adaptations imparted by O<sub>2</sub>-dependent enzymes were not energy conservation, but novel organic substrate oxidations and O<sub>2</sub>-dependent, hence O<sub>2</sub>-tolerant, alternative pathways for O<sub>2</sub>-inhibited reactions. Oxygen-dependent enzymes evolved in ancestrally anaerobic pathways for essential cofactor biosynthesis including NAD<sup>+</sup>, pyridoxal, thiamine, ubiquinone, cobalamin, heme, and chlorophyll. These innovations allowed prokaryotes to synthesize essential cofactors in O<sub>2</sub>-containing environments, a prerequisite for the later emergence of aerobic respiratory chains.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616280/pdf/","citationCount":"0","resultStr":"{\"title\":\"The radical impact of oxygen on prokaryotic evolution—enzyme inhibition first, uninhibited essential biosyntheses second, aerobic respiration third\",\"authors\":\"Natalia Mrnjavac,&nbsp;Falk S. P. Nagies,&nbsp;Jessica L. E. Wimmer,&nbsp;Nils Kapust,&nbsp;Michael R. Knopp,&nbsp;Katharina Trost,&nbsp;Luca Modjewski,&nbsp;Nico Bremer,&nbsp;Marek Mentel,&nbsp;Mauro Degli Esposti,&nbsp;Itzhak Mizrahi,&nbsp;John F. Allen,&nbsp;William F. Martin\",\"doi\":\"10.1002/1873-3468.14906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Molecular oxygen is a stable diradical. All O<sub>2</sub>-dependent enzymes employ a radical mechanism. Generated by cyanobacteria, O<sub>2</sub> started accumulating on Earth 2.4 billion years ago. Its evolutionary impact is traditionally sought in respiration and energy yield. We mapped 365 O<sub>2</sub>-dependent enzymatic reactions of prokaryotes to phylogenies for the corresponding 792 protein families. The main physiological adaptations imparted by O<sub>2</sub>-dependent enzymes were not energy conservation, but novel organic substrate oxidations and O<sub>2</sub>-dependent, hence O<sub>2</sub>-tolerant, alternative pathways for O<sub>2</sub>-inhibited reactions. Oxygen-dependent enzymes evolved in ancestrally anaerobic pathways for essential cofactor biosynthesis including NAD<sup>+</sup>, pyridoxal, thiamine, ubiquinone, cobalamin, heme, and chlorophyll. These innovations allowed prokaryotes to synthesize essential cofactors in O<sub>2</sub>-containing environments, a prerequisite for the later emergence of aerobic respiratory chains.</p>\",\"PeriodicalId\":12142,\"journal\":{\"name\":\"FEBS Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616280/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEBS Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/1873-3468.14906\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Letters","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/1873-3468.14906","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

分子氧是一种稳定的二元自由基。所有依赖氧气的酶都采用自由基机制。24 亿年前,由蓝藻产生的氧气开始在地球上积累。传统上,人们在呼吸作用和能量产出中寻找它对进化的影响。我们将原核生物的 365 种依赖氧气的酶反应与相应的 792 个蛋白质家族的系统进化关系进行了映射。依赖氧气的酶所带来的主要生理适应不是能量守恒,而是新的有机底物氧化和依赖氧气(因此耐受氧气)的氧气抑制反应的替代途径。依赖氧气的酶在祖先厌氧途径中进化,用于重要辅助因子的生物合成,包括NAD+、吡哆醛、硫胺素、泛醌、钴胺素、血红素和叶绿素。这些创新使原核生物能够在含氧气的环境中合成必需的辅助因子,这是后来出现需氧呼吸链的先决条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The radical impact of oxygen on prokaryotic evolution—enzyme inhibition first, uninhibited essential biosyntheses second, aerobic respiration third

The radical impact of oxygen on prokaryotic evolution—enzyme inhibition first, uninhibited essential biosyntheses second, aerobic respiration third

Molecular oxygen is a stable diradical. All O2-dependent enzymes employ a radical mechanism. Generated by cyanobacteria, O2 started accumulating on Earth 2.4 billion years ago. Its evolutionary impact is traditionally sought in respiration and energy yield. We mapped 365 O2-dependent enzymatic reactions of prokaryotes to phylogenies for the corresponding 792 protein families. The main physiological adaptations imparted by O2-dependent enzymes were not energy conservation, but novel organic substrate oxidations and O2-dependent, hence O2-tolerant, alternative pathways for O2-inhibited reactions. Oxygen-dependent enzymes evolved in ancestrally anaerobic pathways for essential cofactor biosynthesis including NAD+, pyridoxal, thiamine, ubiquinone, cobalamin, heme, and chlorophyll. These innovations allowed prokaryotes to synthesize essential cofactors in O2-containing environments, a prerequisite for the later emergence of aerobic respiratory chains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FEBS Letters
FEBS Letters 生物-生化与分子生物学
CiteScore
7.00
自引率
2.90%
发文量
303
审稿时长
1.0 months
期刊介绍: FEBS Letters is one of the world''s leading journals in molecular biology and is renowned both for its quality of content and speed of production. Bringing together the most important developments in the molecular biosciences, FEBS Letters provides an international forum for Minireviews, Research Letters and Hypotheses that merit urgent publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信