利用液化二甲醚进行污泥深度脱水:基于响应面方法的操作条件选择。

IF 2.2 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Environmental Technology Pub Date : 2025-01-01 Epub Date: 2024-05-15 DOI:10.1080/09593330.2024.2354123
Mingzhu Wang, Ying Huang, Dong Zhang, Yuan He
{"title":"利用液化二甲醚进行污泥深度脱水:基于响应面方法的操作条件选择。","authors":"Mingzhu Wang, Ying Huang, Dong Zhang, Yuan He","doi":"10.1080/09593330.2024.2354123","DOIUrl":null,"url":null,"abstract":"<p><p>Sludge is an inevitable by-product of the sewage treatment process and its high moisture content poses significant challenges for its treatment and disposal. This study focuses on the technology of sludge deep dewatering using liquefied dimethyl ether (DME) and explores the relationship between operating parameters (DME/sludge ratio, extraction time and stirring speed) and the water content of the sludge after deep dewatering. After deep dewatering, the sludge's lower heating value (LHV) was significantly increased. The dehydrated filtrate is highly biodegradable and could be treated together with sewage. Based on the response surface method of central composite design, a second-order regression model of the above three variables and sludge water content as the response was established. Finally, the operating conditions diagram was drawn by target water content (36.96 wt.%) which meets the requirement of self-sustained incineration and model equation. This study provides a valuable perspective on sludge drying and fuelisation.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"289-302"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sludge deep dewatering by liquefied dimethyl ether: selection of operating conditions based on response surface methodology.\",\"authors\":\"Mingzhu Wang, Ying Huang, Dong Zhang, Yuan He\",\"doi\":\"10.1080/09593330.2024.2354123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sludge is an inevitable by-product of the sewage treatment process and its high moisture content poses significant challenges for its treatment and disposal. This study focuses on the technology of sludge deep dewatering using liquefied dimethyl ether (DME) and explores the relationship between operating parameters (DME/sludge ratio, extraction time and stirring speed) and the water content of the sludge after deep dewatering. After deep dewatering, the sludge's lower heating value (LHV) was significantly increased. The dehydrated filtrate is highly biodegradable and could be treated together with sewage. Based on the response surface method of central composite design, a second-order regression model of the above three variables and sludge water content as the response was established. Finally, the operating conditions diagram was drawn by target water content (36.96 wt.%) which meets the requirement of self-sustained incineration and model equation. This study provides a valuable perspective on sludge drying and fuelisation.</p>\",\"PeriodicalId\":12009,\"journal\":{\"name\":\"Environmental Technology\",\"volume\":\" \",\"pages\":\"289-302\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/09593330.2024.2354123\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2354123","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

污泥是污水处理过程中不可避免的副产品,其高含水率给污泥的处理和处置带来了巨大挑战。本研究重点研究了利用液化二甲醚(DME)进行污泥深度脱水的技术,并探讨了操作参数(DME/污泥比、萃取时间和搅拌速度)与深度脱水后污泥含水率之间的关系。深度脱水后,污泥的低热值(LHV)显著提高。脱水后的滤液具有很高的生物降解性,可与污水一起处理。根据中心复合设计的响应面法,建立了以污泥含水率为响应的上述三个变量的二阶回归模型。最后,根据符合自持焚烧要求的目标含水率(36.96 wt.%)和模型方程绘制了运行条件图。这项研究为污泥干燥和燃料化提供了一个宝贵的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sludge deep dewatering by liquefied dimethyl ether: selection of operating conditions based on response surface methodology.

Sludge is an inevitable by-product of the sewage treatment process and its high moisture content poses significant challenges for its treatment and disposal. This study focuses on the technology of sludge deep dewatering using liquefied dimethyl ether (DME) and explores the relationship between operating parameters (DME/sludge ratio, extraction time and stirring speed) and the water content of the sludge after deep dewatering. After deep dewatering, the sludge's lower heating value (LHV) was significantly increased. The dehydrated filtrate is highly biodegradable and could be treated together with sewage. Based on the response surface method of central composite design, a second-order regression model of the above three variables and sludge water content as the response was established. Finally, the operating conditions diagram was drawn by target water content (36.96 wt.%) which meets the requirement of self-sustained incineration and model equation. This study provides a valuable perspective on sludge drying and fuelisation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Technology
Environmental Technology 环境科学-环境科学
CiteScore
6.50
自引率
3.60%
发文量
0
审稿时长
4 months
期刊介绍: Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies. Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months. Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信