迈向精确的量子力学热化学:(1)可扩展的实施以及键加性修正和等效反应的比较。

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Haoyang Wu, A. Mark Payne, Hao-Wei Pang, Angiras Menon, Colin A. Grambow, Duminda S. Ranasinghe, Xiaorui Dong, Alon Grinberg Dana and William H. Green*, 
{"title":"迈向精确的量子力学热化学:(1)可扩展的实施以及键加性修正和等效反应的比较。","authors":"Haoyang Wu,&nbsp;A. Mark Payne,&nbsp;Hao-Wei Pang,&nbsp;Angiras Menon,&nbsp;Colin A. Grambow,&nbsp;Duminda S. Ranasinghe,&nbsp;Xiaorui Dong,&nbsp;Alon Grinberg Dana and William H. Green*,&nbsp;","doi":"10.1021/acs.jpca.4c00949","DOIUrl":null,"url":null,"abstract":"<p >Obtaining accurate enthalpies of formation of chemical species, Δ<i>H</i><sub>f</sub>, often requires empirical corrections that connect the results of quantum mechanical (QM) calculations with the experimental enthalpies of elements in their standard state. One approach is to use atomization energy corrections followed by bond additivity corrections (BACs), such as those defined by Petersson et al. or Anantharaman and Melius. Another approach is to utilize isodesmic reactions (IDRs) as shown by Buerger et al. We implement both approaches in Arkane, an open-source software that can calculate species thermochemistry using results from various QM software packages. In this work, we collect 421 reference species from the literature to derive Δ<i>H</i><sub>f</sub> corrections and fit atomization energy corrections and BACs for 15 commonly used model chemistries. We find that both types of BACs yield similar accuracy, although Anantharaman- and Melius-type BACs appear to generalize better. Furthermore, BACs tend to achieve better accuracy than IDRs for commonly used model chemistries, and IDRs can be less robust because of the sensitivity to the chosen reference species and reactions. Overall, Anantharaman- and Melius-type BACs are our recommended approach for achieving accurate QM corrections for enthalpies.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"128 21","pages":"4335–4352"},"PeriodicalIF":2.8000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward Accurate Quantum Mechanical Thermochemistry: (1) Extensible Implementation and Comparison of Bond Additivity Corrections and Isodesmic Reactions\",\"authors\":\"Haoyang Wu,&nbsp;A. Mark Payne,&nbsp;Hao-Wei Pang,&nbsp;Angiras Menon,&nbsp;Colin A. Grambow,&nbsp;Duminda S. Ranasinghe,&nbsp;Xiaorui Dong,&nbsp;Alon Grinberg Dana and William H. Green*,&nbsp;\",\"doi\":\"10.1021/acs.jpca.4c00949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Obtaining accurate enthalpies of formation of chemical species, Δ<i>H</i><sub>f</sub>, often requires empirical corrections that connect the results of quantum mechanical (QM) calculations with the experimental enthalpies of elements in their standard state. One approach is to use atomization energy corrections followed by bond additivity corrections (BACs), such as those defined by Petersson et al. or Anantharaman and Melius. Another approach is to utilize isodesmic reactions (IDRs) as shown by Buerger et al. We implement both approaches in Arkane, an open-source software that can calculate species thermochemistry using results from various QM software packages. In this work, we collect 421 reference species from the literature to derive Δ<i>H</i><sub>f</sub> corrections and fit atomization energy corrections and BACs for 15 commonly used model chemistries. We find that both types of BACs yield similar accuracy, although Anantharaman- and Melius-type BACs appear to generalize better. Furthermore, BACs tend to achieve better accuracy than IDRs for commonly used model chemistries, and IDRs can be less robust because of the sensitivity to the chosen reference species and reactions. Overall, Anantharaman- and Melius-type BACs are our recommended approach for achieving accurate QM corrections for enthalpies.</p>\",\"PeriodicalId\":59,\"journal\":{\"name\":\"The Journal of Physical Chemistry A\",\"volume\":\"128 21\",\"pages\":\"4335–4352\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpca.4c00949\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpca.4c00949","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

要获得准确的化学物质形成焓 ΔHf,通常需要经验修正,将量子力学(QM)计算结果与元素标准状态下的实验焓联系起来。一种方法是使用原子化能修正,然后再使用键加成修正(BAC),如 Petersson 等人或 Anantharaman 和 Melius 所定义的修正。我们在 Arkane 中实现了这两种方法,Arkane 是一款开源软件,可以利用各种 QM 软件包的结果计算物种热化学。在这项工作中,我们从文献中收集了 421 个参考物种,得出了 ΔHf 修正值,并拟合了 15 种常用化学模型的雾化能修正值和 BAC。我们发现,两种类型的 BAC 都能产生相似的精度,但 Anantharaman 型和 Melius 型 BAC 的通用性似乎更好。此外,对于常用的化学模型,BAC 往往比 IDR 获得更好的准确性,而 IDR 由于对所选参比物种和反应的敏感性,其稳健性可能较差。总之,阿南塔拉曼和梅利乌斯型 BAC 是我们推荐的实现精确量子力学焓修正的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Toward Accurate Quantum Mechanical Thermochemistry: (1) Extensible Implementation and Comparison of Bond Additivity Corrections and Isodesmic Reactions

Toward Accurate Quantum Mechanical Thermochemistry: (1) Extensible Implementation and Comparison of Bond Additivity Corrections and Isodesmic Reactions

Toward Accurate Quantum Mechanical Thermochemistry: (1) Extensible Implementation and Comparison of Bond Additivity Corrections and Isodesmic Reactions

Obtaining accurate enthalpies of formation of chemical species, ΔHf, often requires empirical corrections that connect the results of quantum mechanical (QM) calculations with the experimental enthalpies of elements in their standard state. One approach is to use atomization energy corrections followed by bond additivity corrections (BACs), such as those defined by Petersson et al. or Anantharaman and Melius. Another approach is to utilize isodesmic reactions (IDRs) as shown by Buerger et al. We implement both approaches in Arkane, an open-source software that can calculate species thermochemistry using results from various QM software packages. In this work, we collect 421 reference species from the literature to derive ΔHf corrections and fit atomization energy corrections and BACs for 15 commonly used model chemistries. We find that both types of BACs yield similar accuracy, although Anantharaman- and Melius-type BACs appear to generalize better. Furthermore, BACs tend to achieve better accuracy than IDRs for commonly used model chemistries, and IDRs can be less robust because of the sensitivity to the chosen reference species and reactions. Overall, Anantharaman- and Melius-type BACs are our recommended approach for achieving accurate QM corrections for enthalpies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信