成纤维细胞中 C a 2 + 和 NO 的动态信号系统的调节紊乱会导致纤维化疾病。

IF 1.8 4区 生物学 Q3 BIOPHYSICS
Ankit Kothiya, Neeru Adlakha
{"title":"成纤维细胞中 C a 2 + 和 NO 的动态信号系统的调节紊乱会导致纤维化疾病。","authors":"Ankit Kothiya,&nbsp;Neeru Adlakha","doi":"10.1007/s10867-024-09657-3","DOIUrl":null,"url":null,"abstract":"<div><p>Studying the calcium dynamics within a fibroblast cell individually has provided only a restricted understanding of its functions. However, research efforts focusing on systems biology approaches for such investigations have been largely neglected by researchers until now. Fibroblast cells rely on signaling from calcium <span>\\((Ca^{2+})\\)</span> and nitric oxide (<i>NO</i>) to maintain their physiological functions and structural stability. Various studies have demonstrated the correlation between <i>NO</i> and the control of <span>\\(Ca^{2+}\\)</span> dynamics in cells. However, there is currently no existing model to assess the disruptions caused by various factors in regulatory dynamics, potentially resulting in diverse fibrotic disorders. A mathematical model has been developed to investigate the effects of changes in parameters such as buffer, receptor, sarcoplasmic endoplasmic reticulum <span>\\(Ca^{2+}\\)</span>-ATPase (<i>SERCA</i>) pump, and source influx on the regulation and dysregulation of spatiotemporal calcium and <i>NO</i> dynamics in fibroblast cells. This model is based on a system of reaction-diffusion equations, and numerical simulations are conducted using the finite element method. Disturbances in key processes related to calcium and nitric oxide, including source influx, buffer mechanism, <i>SERCA</i> pump, and inositol trisphosphate <span>\\((IP_3)\\)</span> receptor, may contribute to deregulation in the calcium and <i>NO</i> dynamics within fibroblasts. The findings also provide new insights into the extent and severity of disorders resulting from alterations in various parameters, potentially leading to deregulation and the development of fibrotic disease.</p></div>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":"50 2","pages":"229 - 251"},"PeriodicalIF":1.8000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulatory disturbances in the dynamical signaling systems of \\\\(Ca^{2+}\\\\) and NO in fibroblasts cause fibrotic disorders\",\"authors\":\"Ankit Kothiya,&nbsp;Neeru Adlakha\",\"doi\":\"10.1007/s10867-024-09657-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Studying the calcium dynamics within a fibroblast cell individually has provided only a restricted understanding of its functions. However, research efforts focusing on systems biology approaches for such investigations have been largely neglected by researchers until now. Fibroblast cells rely on signaling from calcium <span>\\\\((Ca^{2+})\\\\)</span> and nitric oxide (<i>NO</i>) to maintain their physiological functions and structural stability. Various studies have demonstrated the correlation between <i>NO</i> and the control of <span>\\\\(Ca^{2+}\\\\)</span> dynamics in cells. However, there is currently no existing model to assess the disruptions caused by various factors in regulatory dynamics, potentially resulting in diverse fibrotic disorders. A mathematical model has been developed to investigate the effects of changes in parameters such as buffer, receptor, sarcoplasmic endoplasmic reticulum <span>\\\\(Ca^{2+}\\\\)</span>-ATPase (<i>SERCA</i>) pump, and source influx on the regulation and dysregulation of spatiotemporal calcium and <i>NO</i> dynamics in fibroblast cells. This model is based on a system of reaction-diffusion equations, and numerical simulations are conducted using the finite element method. Disturbances in key processes related to calcium and nitric oxide, including source influx, buffer mechanism, <i>SERCA</i> pump, and inositol trisphosphate <span>\\\\((IP_3)\\\\)</span> receptor, may contribute to deregulation in the calcium and <i>NO</i> dynamics within fibroblasts. The findings also provide new insights into the extent and severity of disorders resulting from alterations in various parameters, potentially leading to deregulation and the development of fibrotic disease.</p></div>\",\"PeriodicalId\":612,\"journal\":{\"name\":\"Journal of Biological Physics\",\"volume\":\"50 2\",\"pages\":\"229 - 251\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Physics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10867-024-09657-3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Physics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10867-024-09657-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

单独研究成纤维细胞内的钙动态只能有限地了解其功能。然而,迄今为止,以系统生物学方法为重点的研究工作在很大程度上被研究人员所忽视。成纤维细胞依靠钙(C a 2 +)和一氧化氮(NO)的信号传递来维持其生理功能和结构稳定性。各种研究都证明了一氧化氮与细胞内 C a 2 + 动态控制之间的相关性。然而,目前还没有现成的模型来评估各种因素对调控动态造成的破坏,从而可能导致各种纤维化疾病。我们建立了一个数学模型,以研究缓冲剂、受体、肌浆内质网 C a 2 + ATP 酶(SERCA)泵和源流入等参数的变化对成纤维细胞中钙和 NO 时空动态调节和失调的影响。该模型基于反应-扩散方程系统,并采用有限元法进行了数值模拟。与钙和一氧化氮有关的关键过程,包括钙源流入、缓冲机制、SERCA 泵和三磷酸肌醇(I P 3)受体的紊乱,可能会导致成纤维细胞内的钙和一氧化氮动力学失调。这些发现还为我们提供了新的视角,使我们了解各种参数的改变可能导致的失调程度和严重性,以及纤维化疾病的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Regulatory disturbances in the dynamical signaling systems of \(Ca^{2+}\) and NO in fibroblasts cause fibrotic disorders

Regulatory disturbances in the dynamical signaling systems of \(Ca^{2+}\) and NO in fibroblasts cause fibrotic disorders

Studying the calcium dynamics within a fibroblast cell individually has provided only a restricted understanding of its functions. However, research efforts focusing on systems biology approaches for such investigations have been largely neglected by researchers until now. Fibroblast cells rely on signaling from calcium \((Ca^{2+})\) and nitric oxide (NO) to maintain their physiological functions and structural stability. Various studies have demonstrated the correlation between NO and the control of \(Ca^{2+}\) dynamics in cells. However, there is currently no existing model to assess the disruptions caused by various factors in regulatory dynamics, potentially resulting in diverse fibrotic disorders. A mathematical model has been developed to investigate the effects of changes in parameters such as buffer, receptor, sarcoplasmic endoplasmic reticulum \(Ca^{2+}\)-ATPase (SERCA) pump, and source influx on the regulation and dysregulation of spatiotemporal calcium and NO dynamics in fibroblast cells. This model is based on a system of reaction-diffusion equations, and numerical simulations are conducted using the finite element method. Disturbances in key processes related to calcium and nitric oxide, including source influx, buffer mechanism, SERCA pump, and inositol trisphosphate \((IP_3)\) receptor, may contribute to deregulation in the calcium and NO dynamics within fibroblasts. The findings also provide new insights into the extent and severity of disorders resulting from alterations in various parameters, potentially leading to deregulation and the development of fibrotic disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biological Physics
Journal of Biological Physics 生物-生物物理
CiteScore
3.00
自引率
5.60%
发文量
20
审稿时长
>12 weeks
期刊介绍: Many physicists are turning their attention to domains that were not traditionally part of physics and are applying the sophisticated tools of theoretical, computational and experimental physics to investigate biological processes, systems and materials. The Journal of Biological Physics provides a medium where this growing community of scientists can publish its results and discuss its aims and methods. It welcomes papers which use the tools of physics in an innovative way to study biological problems, as well as research aimed at providing a better understanding of the physical principles underlying biological processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信