自噬对抗衰老造血干细胞中炎症驱动的糖酵解损伤

IF 19.8 1区 医学 Q1 CELL & TISSUE ENGINEERING
Paul V. Dellorusso, Melissa A. Proven, Fernando J. Calero-Nieto, Xiaonan Wang, Carl A. Mitchell, Felix Hartmann, Meelad Amouzgar, Patricia Favaro, Andrew DeVilbiss, James W. Swann, Theodore T. Ho, Zhiyu Zhao, Sean C. Bendall, Sean Morrison, Berthold Göttgens, Emmanuelle Passegué
{"title":"自噬对抗衰老造血干细胞中炎症驱动的糖酵解损伤","authors":"Paul V. Dellorusso, Melissa A. Proven, Fernando J. Calero-Nieto, Xiaonan Wang, Carl A. Mitchell, Felix Hartmann, Meelad Amouzgar, Patricia Favaro, Andrew DeVilbiss, James W. Swann, Theodore T. Ho, Zhiyu Zhao, Sean C. Bendall, Sean Morrison, Berthold Göttgens, Emmanuelle Passegué","doi":"10.1016/j.stem.2024.04.020","DOIUrl":null,"url":null,"abstract":"<p>Autophagy is central to the benefits of longevity signaling programs and to hematopoietic stem cell (HSC) response to nutrient stress. With age, a subset of HSCs increases autophagy flux and preserves regenerative capacity, but the signals triggering autophagy and maintaining the functionality of autophagy-activated old HSCs (oHSCs) remain unknown. Here, we demonstrate that autophagy is an adaptive cytoprotective response to chronic inflammation in the aging murine bone marrow (BM) niche. We find that inflammation impairs glucose uptake and suppresses glycolysis in oHSCs through Socs3-mediated inhibition of AKT/FoxO-dependent signaling, with inflammation-mediated autophagy engagement preserving functional quiescence by enabling metabolic adaptation to glycolytic impairment. Moreover, we show that transient autophagy induction via a short-term fasting/refeeding paradigm normalizes glycolytic flux and significantly boosts oHSC regenerative potential. Our results identify inflammation-driven glucose hypometabolism as a key driver of HSC dysfunction with age and establish autophagy as a targetable node to reset oHSC regenerative capacity.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"192 1","pages":""},"PeriodicalIF":19.8000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autophagy counters inflammation-driven glycolytic impairment in aging hematopoietic stem cells\",\"authors\":\"Paul V. Dellorusso, Melissa A. Proven, Fernando J. Calero-Nieto, Xiaonan Wang, Carl A. Mitchell, Felix Hartmann, Meelad Amouzgar, Patricia Favaro, Andrew DeVilbiss, James W. Swann, Theodore T. Ho, Zhiyu Zhao, Sean C. Bendall, Sean Morrison, Berthold Göttgens, Emmanuelle Passegué\",\"doi\":\"10.1016/j.stem.2024.04.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Autophagy is central to the benefits of longevity signaling programs and to hematopoietic stem cell (HSC) response to nutrient stress. With age, a subset of HSCs increases autophagy flux and preserves regenerative capacity, but the signals triggering autophagy and maintaining the functionality of autophagy-activated old HSCs (oHSCs) remain unknown. Here, we demonstrate that autophagy is an adaptive cytoprotective response to chronic inflammation in the aging murine bone marrow (BM) niche. We find that inflammation impairs glucose uptake and suppresses glycolysis in oHSCs through Socs3-mediated inhibition of AKT/FoxO-dependent signaling, with inflammation-mediated autophagy engagement preserving functional quiescence by enabling metabolic adaptation to glycolytic impairment. Moreover, we show that transient autophagy induction via a short-term fasting/refeeding paradigm normalizes glycolytic flux and significantly boosts oHSC regenerative potential. Our results identify inflammation-driven glucose hypometabolism as a key driver of HSC dysfunction with age and establish autophagy as a targetable node to reset oHSC regenerative capacity.</p>\",\"PeriodicalId\":9665,\"journal\":{\"name\":\"Cell stem cell\",\"volume\":\"192 1\",\"pages\":\"\"},\"PeriodicalIF\":19.8000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell stem cell\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.stem.2024.04.020\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell stem cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stem.2024.04.020","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

自噬是长寿信号程序和造血干细胞(HSC)应对营养压力的核心。随着年龄的增长,造血干细胞的一个亚群会增加自噬通量并保持再生能力,但触发自噬和维持自噬激活的老年造血干细胞(oHSCs)功能的信号仍然未知。在这里,我们证明自噬是衰老小鼠骨髓(BM)龛对慢性炎症的一种适应性细胞保护反应。我们发现,炎症会损害葡萄糖摄取,并通过 Socs3 介导的 AKT/FoxO 依赖性信号传导抑制 oHSCs 中的糖酵解,而炎症介导的自噬参与可使代谢适应糖酵解损伤,从而维持功能性静止。此外,我们还发现,通过短期禁食/进食模式诱导自噬可使糖酵解通量恢复正常,并显著提高 oHSC 的再生潜力。我们的研究结果表明,炎症驱动的糖代谢低下是造血干细胞随年龄增长而出现功能障碍的一个关键驱动因素,并确定自噬是重置oHSC再生能力的一个目标节点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Autophagy counters inflammation-driven glycolytic impairment in aging hematopoietic stem cells

Autophagy counters inflammation-driven glycolytic impairment in aging hematopoietic stem cells

Autophagy is central to the benefits of longevity signaling programs and to hematopoietic stem cell (HSC) response to nutrient stress. With age, a subset of HSCs increases autophagy flux and preserves regenerative capacity, but the signals triggering autophagy and maintaining the functionality of autophagy-activated old HSCs (oHSCs) remain unknown. Here, we demonstrate that autophagy is an adaptive cytoprotective response to chronic inflammation in the aging murine bone marrow (BM) niche. We find that inflammation impairs glucose uptake and suppresses glycolysis in oHSCs through Socs3-mediated inhibition of AKT/FoxO-dependent signaling, with inflammation-mediated autophagy engagement preserving functional quiescence by enabling metabolic adaptation to glycolytic impairment. Moreover, we show that transient autophagy induction via a short-term fasting/refeeding paradigm normalizes glycolytic flux and significantly boosts oHSC regenerative potential. Our results identify inflammation-driven glucose hypometabolism as a key driver of HSC dysfunction with age and establish autophagy as a targetable node to reset oHSC regenerative capacity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell stem cell
Cell stem cell 生物-细胞生物学
CiteScore
37.10
自引率
2.50%
发文量
151
审稿时长
42 days
期刊介绍: Cell Stem Cell is a comprehensive journal covering the entire spectrum of stem cell biology. It encompasses various topics, including embryonic stem cells, pluripotency, germline stem cells, tissue-specific stem cells, differentiation, epigenetics, genomics, cancer stem cells, stem cell niches, disease models, nuclear transfer technology, bioengineering, drug discovery, in vivo imaging, therapeutic applications, regenerative medicine, clinical insights, research policies, ethical considerations, and technical innovations. The journal welcomes studies from any model system providing insights into stem cell biology, with a focus on human stem cells. It publishes research reports of significant importance, along with review and analysis articles covering diverse aspects of stem cell research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信