生态区域易燃性阈值的全球差异

IF 5.4 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION
Ecography Pub Date : 2024-05-15 DOI:10.1111/ecog.07127
Todd M. Ellis, David M. J. S. Bowman, Grant J. Williamson
{"title":"生态区域易燃性阈值的全球差异","authors":"Todd M. Ellis,&nbsp;David M. J. S. Bowman,&nbsp;Grant J. Williamson","doi":"10.1111/ecog.07127","DOIUrl":null,"url":null,"abstract":"<p>Anthropogenic climate change is altering the state of worldwide fire regimes, including by increasing the number of days per year when vegetation is dry enough to burn. Indices representing the percent moisture content of dead fine fuels as derived from meteorological data have been used to assess geographic patterns and temporal trends in vegetation flammability. To date, this approach has assumed a single flammability threshold, typically between 8 and 12%, controlling fire potential regardless of the vegetation type or climate domain. Here we use remotely sensed burnt area products and a common fire weather index calculated from global meteorological reanalysis data to identify and describe geographic variation in fuel moisture as a flammability threshold. This geospatial analysis identified a wide range of flammability thresholds associated with fire activity across 772 ecoregions, often well above or below the commonly used range of values. Many boreal and temperate forests, for example, can ignite and sustain wildfires with higher estimated fuel moisture than previously identified; Mediterranean forests, in contrast, tend to sustain fires with consistently low estimated fuel moisture. Statistical modelling showed that flammability thresholds derived from burnt area are primarily driven by climatological variables, particularly precipitation and temperature. Our analysis also identified complex associations between vegetation structure, fuel types, and climatic conditions highlighting the complexity in vegetation–climate–fire relationships globally. Our study provides a critical, necessary step in understanding and describing global pyrogeography and tracking changes in spatial and temporal fire activity.</p>","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"2024 7","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ecog.07127","citationCount":"0","resultStr":"{\"title\":\"Global variation in ecoregion flammability thresholds\",\"authors\":\"Todd M. Ellis,&nbsp;David M. J. S. Bowman,&nbsp;Grant J. Williamson\",\"doi\":\"10.1111/ecog.07127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Anthropogenic climate change is altering the state of worldwide fire regimes, including by increasing the number of days per year when vegetation is dry enough to burn. Indices representing the percent moisture content of dead fine fuels as derived from meteorological data have been used to assess geographic patterns and temporal trends in vegetation flammability. To date, this approach has assumed a single flammability threshold, typically between 8 and 12%, controlling fire potential regardless of the vegetation type or climate domain. Here we use remotely sensed burnt area products and a common fire weather index calculated from global meteorological reanalysis data to identify and describe geographic variation in fuel moisture as a flammability threshold. This geospatial analysis identified a wide range of flammability thresholds associated with fire activity across 772 ecoregions, often well above or below the commonly used range of values. Many boreal and temperate forests, for example, can ignite and sustain wildfires with higher estimated fuel moisture than previously identified; Mediterranean forests, in contrast, tend to sustain fires with consistently low estimated fuel moisture. Statistical modelling showed that flammability thresholds derived from burnt area are primarily driven by climatological variables, particularly precipitation and temperature. Our analysis also identified complex associations between vegetation structure, fuel types, and climatic conditions highlighting the complexity in vegetation–climate–fire relationships globally. Our study provides a critical, necessary step in understanding and describing global pyrogeography and tracking changes in spatial and temporal fire activity.</p>\",\"PeriodicalId\":51026,\"journal\":{\"name\":\"Ecography\",\"volume\":\"2024 7\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ecog.07127\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecography\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ecog.07127\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ecog.07127","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

摘要

人为气候变化正在改变全球火灾机制的状态,包括增加每年植被干燥到足以燃烧的天数。根据气象数据得出的代表枯死细小燃料含水量百分比的指数已被用于评估植被可燃性的地理模式和时间趋势。迄今为止,这种方法假定了一个单一的可燃性阈值,通常在 8% 到 12% 之间,无论植被类型或气候领域如何,都能控制火灾的可能性。在这里,我们使用遥感烧毁面积产品和根据全球气象再分析数据计算出的通用火灾气象指数来识别和描述作为可燃性阈值的燃料水分的地理变化。这项地理空间分析确定了 772 个生态区域中与火灾活动相关的各种可燃性阈值,这些阈值往往远远高于或低于常用的数值范围。例如,许多北方和温带森林可以在估计燃料湿度比以前确定的更高的情况下点燃并维持野火;相比之下,地中海森林往往在估计燃料湿度持续较低的情况下维持火灾。统计建模表明,从燃烧面积得出的可燃性阈值主要受气候变量的影响,尤其是降水和温度。我们的分析还发现了植被结构、燃料类型和气候条件之间的复杂关联,这凸显了全球植被-气候-火灾关系的复杂性。我们的研究为了解和描述全球火地理以及跟踪空间和时间火灾活动的变化提供了一个关键和必要的步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Global variation in ecoregion flammability thresholds

Global variation in ecoregion flammability thresholds

Anthropogenic climate change is altering the state of worldwide fire regimes, including by increasing the number of days per year when vegetation is dry enough to burn. Indices representing the percent moisture content of dead fine fuels as derived from meteorological data have been used to assess geographic patterns and temporal trends in vegetation flammability. To date, this approach has assumed a single flammability threshold, typically between 8 and 12%, controlling fire potential regardless of the vegetation type or climate domain. Here we use remotely sensed burnt area products and a common fire weather index calculated from global meteorological reanalysis data to identify and describe geographic variation in fuel moisture as a flammability threshold. This geospatial analysis identified a wide range of flammability thresholds associated with fire activity across 772 ecoregions, often well above or below the commonly used range of values. Many boreal and temperate forests, for example, can ignite and sustain wildfires with higher estimated fuel moisture than previously identified; Mediterranean forests, in contrast, tend to sustain fires with consistently low estimated fuel moisture. Statistical modelling showed that flammability thresholds derived from burnt area are primarily driven by climatological variables, particularly precipitation and temperature. Our analysis also identified complex associations between vegetation structure, fuel types, and climatic conditions highlighting the complexity in vegetation–climate–fire relationships globally. Our study provides a critical, necessary step in understanding and describing global pyrogeography and tracking changes in spatial and temporal fire activity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecography
Ecography 环境科学-生态学
CiteScore
11.60
自引率
3.40%
发文量
122
审稿时长
8-16 weeks
期刊介绍: ECOGRAPHY publishes exciting, novel, and important articles that significantly advance understanding of ecological or biodiversity patterns in space or time. Papers focusing on conservation or restoration are welcomed, provided they are anchored in ecological theory and convey a general message that goes beyond a single case study. We encourage papers that seek advancing the field through the development and testing of theory or methodology, or by proposing new tools for analysis or interpretation of ecological phenomena. Manuscripts are expected to address general principles in ecology, though they may do so using a specific model system if they adequately frame the problem relative to a generalized ecological question or problem. Purely descriptive papers are considered only if breaking new ground and/or describing patterns seldom explored. Studies focused on a single species or single location are generally discouraged unless they make a significant contribution to advancing general theory or understanding of biodiversity patterns and processes. Manuscripts merely confirming or marginally extending results of previous work are unlikely to be considered in Ecography. Papers are judged by virtue of their originality, appeal to general interest, and their contribution to new developments in studies of spatial and temporal ecological patterns. There are no biases with regard to taxon, biome, or biogeographical area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信