{"title":"带规范约束的变分问题与 $$\\mathbb {R}^2$ 中半线性椭圆方程的基态之间的关系","authors":"Masato Hashizume","doi":"10.1007/s00526-024-02710-y","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate variational problems in <span>\\(\\mathbb {R}^2\\)</span> with the Sobolev norm constraints and with the Dirichlet norm constraints. We focus on property of maximizers of the variational problems. Concerning variational problems with the Sobolev norm constraints, we prove that maximizers are ground state solutions of corresponding elliptic equations, while we exhibit an example of a ground state solution which is not a maximizer of corresponding variational problems. On the other hand, we show that maximizers of maximization problems with the Dirichlet norm constraints and ground state solutions of corresponding elliptic equations are the same functions, up to scaling, under suitable setting.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relationship between variational problems with norm constraints and ground state of semilinear elliptic equations in $$\\\\mathbb {R}^2$$\",\"authors\":\"Masato Hashizume\",\"doi\":\"10.1007/s00526-024-02710-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate variational problems in <span>\\\\(\\\\mathbb {R}^2\\\\)</span> with the Sobolev norm constraints and with the Dirichlet norm constraints. We focus on property of maximizers of the variational problems. Concerning variational problems with the Sobolev norm constraints, we prove that maximizers are ground state solutions of corresponding elliptic equations, while we exhibit an example of a ground state solution which is not a maximizer of corresponding variational problems. On the other hand, we show that maximizers of maximization problems with the Dirichlet norm constraints and ground state solutions of corresponding elliptic equations are the same functions, up to scaling, under suitable setting.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02710-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02710-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Relationship between variational problems with norm constraints and ground state of semilinear elliptic equations in $$\mathbb {R}^2$$
In this paper, we investigate variational problems in \(\mathbb {R}^2\) with the Sobolev norm constraints and with the Dirichlet norm constraints. We focus on property of maximizers of the variational problems. Concerning variational problems with the Sobolev norm constraints, we prove that maximizers are ground state solutions of corresponding elliptic equations, while we exhibit an example of a ground state solution which is not a maximizer of corresponding variational problems. On the other hand, we show that maximizers of maximization problems with the Dirichlet norm constraints and ground state solutions of corresponding elliptic equations are the same functions, up to scaling, under suitable setting.