化学放大干显影聚(醛)光刻胶

IF 1.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jose Lopez Ninantay, Anthony Engler, Jared Schwartz and Paul A. Kohl
{"title":"化学放大干显影聚(醛)光刻胶","authors":"Jose Lopez Ninantay, Anthony Engler, Jared Schwartz and Paul A. Kohl","doi":"10.1149/2162-8777/ad47d0","DOIUrl":null,"url":null,"abstract":"The catalytic decomposition of poly(phthalaldehyde) with a photoacid generator can be used as dry-develop photoresist, where the exposed film depolymerizes into small molecules to allow the development of features via controlled vaporization. Higher temperatures enabled shorter dry-development times, but also promoted faster photoacid diffusion that compromised pattern fidelity. Trihexylamine was used as a base quencher to counteract acid diffusion in a phthalaldehyde-propanal co-polymer photoresist. The propanal co-monomer in the polymer improves the vaporization rate because it has a higher vapor pressure than phthalaldehyde. Addition of the base quencher was found to improve the contrast, pattern fidelity, and ease-of-handling of the dry-develop resist in a direct-write UV lithography tool. The dry-development of 4 μm features was achieved with no appreciable residue. For large area features, a spatially variable exposure method was used to direct the residue away from the exposed area. The gradient exposure method was used to produce 100 μm features. Plasma etching after dry-development was also used to achieve residue-free dry-developed patterns. These results show the benefits of incorporating base additives into a dry-develop depolymerizable resist system and highlight the need for addressing residue formation.","PeriodicalId":11496,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":"67 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemically Amplified, Dry-Develop Poly(aldehyde) Photoresist\",\"authors\":\"Jose Lopez Ninantay, Anthony Engler, Jared Schwartz and Paul A. Kohl\",\"doi\":\"10.1149/2162-8777/ad47d0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The catalytic decomposition of poly(phthalaldehyde) with a photoacid generator can be used as dry-develop photoresist, where the exposed film depolymerizes into small molecules to allow the development of features via controlled vaporization. Higher temperatures enabled shorter dry-development times, but also promoted faster photoacid diffusion that compromised pattern fidelity. Trihexylamine was used as a base quencher to counteract acid diffusion in a phthalaldehyde-propanal co-polymer photoresist. The propanal co-monomer in the polymer improves the vaporization rate because it has a higher vapor pressure than phthalaldehyde. Addition of the base quencher was found to improve the contrast, pattern fidelity, and ease-of-handling of the dry-develop resist in a direct-write UV lithography tool. The dry-development of 4 μm features was achieved with no appreciable residue. For large area features, a spatially variable exposure method was used to direct the residue away from the exposed area. The gradient exposure method was used to produce 100 μm features. Plasma etching after dry-development was also used to achieve residue-free dry-developed patterns. These results show the benefits of incorporating base additives into a dry-develop depolymerizable resist system and highlight the need for addressing residue formation.\",\"PeriodicalId\":11496,\"journal\":{\"name\":\"ECS Journal of Solid State Science and Technology\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Journal of Solid State Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1149/2162-8777/ad47d0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Journal of Solid State Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1149/2162-8777/ad47d0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

使用光酸发生器催化分解聚(邻苯二甲酸)可用作干显影光刻胶,在这种情况下,曝光的薄膜会解聚成小分子,以便通过受控气化显影特征。较高的温度可以缩短干显影时间,但也会加快光酸的扩散速度,从而影响图案的保真度。三己胺被用作碱淬火剂,以抵消邻苯二甲醛-丙醛共聚物光刻胶中的酸扩散。聚合物中的丙醛共聚单体可提高蒸发率,因为它的蒸气压比邻苯二甲醛高。在直写紫外光刻工具中,加入碱淬灭剂可改善干显影光刻胶的对比度、图案保真度和易操作性。干显影 4 μm 的特征时没有明显的残留物。对于大面积特征,采用了空间可变曝光法,将残留物引离曝光区域。梯度曝光法用于产生 100 μm 的特征。干显影后的等离子蚀刻也用于实现无残留的干显影图案。这些结果表明了在干显影可解聚光刻胶系统中加入基底添加剂的好处,并强调了解决残留物形成问题的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chemically Amplified, Dry-Develop Poly(aldehyde) Photoresist
The catalytic decomposition of poly(phthalaldehyde) with a photoacid generator can be used as dry-develop photoresist, where the exposed film depolymerizes into small molecules to allow the development of features via controlled vaporization. Higher temperatures enabled shorter dry-development times, but also promoted faster photoacid diffusion that compromised pattern fidelity. Trihexylamine was used as a base quencher to counteract acid diffusion in a phthalaldehyde-propanal co-polymer photoresist. The propanal co-monomer in the polymer improves the vaporization rate because it has a higher vapor pressure than phthalaldehyde. Addition of the base quencher was found to improve the contrast, pattern fidelity, and ease-of-handling of the dry-develop resist in a direct-write UV lithography tool. The dry-development of 4 μm features was achieved with no appreciable residue. For large area features, a spatially variable exposure method was used to direct the residue away from the exposed area. The gradient exposure method was used to produce 100 μm features. Plasma etching after dry-development was also used to achieve residue-free dry-developed patterns. These results show the benefits of incorporating base additives into a dry-develop depolymerizable resist system and highlight the need for addressing residue formation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ECS Journal of Solid State Science and Technology
ECS Journal of Solid State Science and Technology MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
4.50
自引率
13.60%
发文量
455
期刊介绍: The ECS Journal of Solid State Science and Technology (JSS) was launched in 2012, and publishes outstanding research covering fundamental and applied areas of solid state science and technology, including experimental and theoretical aspects of the chemistry and physics of materials and devices. JSS has five topical interest areas: carbon nanostructures and devices dielectric science and materials electronic materials and processing electronic and photonic devices and systems luminescence and display materials, devices and processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信