Jose Lopez Ninantay, Anthony Engler, Jared Schwartz and Paul A. Kohl
{"title":"化学放大干显影聚(醛)光刻胶","authors":"Jose Lopez Ninantay, Anthony Engler, Jared Schwartz and Paul A. Kohl","doi":"10.1149/2162-8777/ad47d0","DOIUrl":null,"url":null,"abstract":"The catalytic decomposition of poly(phthalaldehyde) with a photoacid generator can be used as dry-develop photoresist, where the exposed film depolymerizes into small molecules to allow the development of features via controlled vaporization. Higher temperatures enabled shorter dry-development times, but also promoted faster photoacid diffusion that compromised pattern fidelity. Trihexylamine was used as a base quencher to counteract acid diffusion in a phthalaldehyde-propanal co-polymer photoresist. The propanal co-monomer in the polymer improves the vaporization rate because it has a higher vapor pressure than phthalaldehyde. Addition of the base quencher was found to improve the contrast, pattern fidelity, and ease-of-handling of the dry-develop resist in a direct-write UV lithography tool. The dry-development of 4 μm features was achieved with no appreciable residue. For large area features, a spatially variable exposure method was used to direct the residue away from the exposed area. The gradient exposure method was used to produce 100 μm features. Plasma etching after dry-development was also used to achieve residue-free dry-developed patterns. These results show the benefits of incorporating base additives into a dry-develop depolymerizable resist system and highlight the need for addressing residue formation.","PeriodicalId":11496,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":"67 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemically Amplified, Dry-Develop Poly(aldehyde) Photoresist\",\"authors\":\"Jose Lopez Ninantay, Anthony Engler, Jared Schwartz and Paul A. Kohl\",\"doi\":\"10.1149/2162-8777/ad47d0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The catalytic decomposition of poly(phthalaldehyde) with a photoacid generator can be used as dry-develop photoresist, where the exposed film depolymerizes into small molecules to allow the development of features via controlled vaporization. Higher temperatures enabled shorter dry-development times, but also promoted faster photoacid diffusion that compromised pattern fidelity. Trihexylamine was used as a base quencher to counteract acid diffusion in a phthalaldehyde-propanal co-polymer photoresist. The propanal co-monomer in the polymer improves the vaporization rate because it has a higher vapor pressure than phthalaldehyde. Addition of the base quencher was found to improve the contrast, pattern fidelity, and ease-of-handling of the dry-develop resist in a direct-write UV lithography tool. The dry-development of 4 μm features was achieved with no appreciable residue. For large area features, a spatially variable exposure method was used to direct the residue away from the exposed area. The gradient exposure method was used to produce 100 μm features. Plasma etching after dry-development was also used to achieve residue-free dry-developed patterns. These results show the benefits of incorporating base additives into a dry-develop depolymerizable resist system and highlight the need for addressing residue formation.\",\"PeriodicalId\":11496,\"journal\":{\"name\":\"ECS Journal of Solid State Science and Technology\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Journal of Solid State Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1149/2162-8777/ad47d0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Journal of Solid State Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1149/2162-8777/ad47d0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
The catalytic decomposition of poly(phthalaldehyde) with a photoacid generator can be used as dry-develop photoresist, where the exposed film depolymerizes into small molecules to allow the development of features via controlled vaporization. Higher temperatures enabled shorter dry-development times, but also promoted faster photoacid diffusion that compromised pattern fidelity. Trihexylamine was used as a base quencher to counteract acid diffusion in a phthalaldehyde-propanal co-polymer photoresist. The propanal co-monomer in the polymer improves the vaporization rate because it has a higher vapor pressure than phthalaldehyde. Addition of the base quencher was found to improve the contrast, pattern fidelity, and ease-of-handling of the dry-develop resist in a direct-write UV lithography tool. The dry-development of 4 μm features was achieved with no appreciable residue. For large area features, a spatially variable exposure method was used to direct the residue away from the exposed area. The gradient exposure method was used to produce 100 μm features. Plasma etching after dry-development was also used to achieve residue-free dry-developed patterns. These results show the benefits of incorporating base additives into a dry-develop depolymerizable resist system and highlight the need for addressing residue formation.
期刊介绍:
The ECS Journal of Solid State Science and Technology (JSS) was launched in 2012, and publishes outstanding research covering fundamental and applied areas of solid state science and technology, including experimental and theoretical aspects of the chemistry and physics of materials and devices.
JSS has five topical interest areas:
carbon nanostructures and devices
dielectric science and materials
electronic materials and processing
electronic and photonic devices and systems
luminescence and display materials, devices and processing.