带右手边的两相 p(x)-Laplacian 问题的平面自由边界的正则性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Fausto Ferrari, Claudia Lederman
{"title":"带右手边的两相 p(x)-Laplacian 问题的平面自由边界的正则性","authors":"Fausto Ferrari, Claudia Lederman","doi":"10.1007/s00526-024-02741-5","DOIUrl":null,"url":null,"abstract":"<p>We consider viscosity solutions to two-phase free boundary problems for the <i>p</i>(<i>x</i>)-Laplacian with non-zero right hand side. We prove that flat free boundaries are <span>\\(C^{1,\\gamma }\\)</span>. No assumption on the Lipschitz continuity of solutions is made. These regularity results are the first ones in literature for two-phase free boundary problems for the <i>p</i>(<i>x</i>)-Laplacian and also for two-phase problems for singular/degenerate operators with non-zero right hand side. They are new even when <span>\\(p(x)\\equiv p\\)</span>, i.e., for the <i>p</i>-Laplacian. The fact that our results hold for merely viscosity solutions allows a wide applicability.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularity of flat free boundaries for two-phase p(x)-Laplacian problems with right hand side\",\"authors\":\"Fausto Ferrari, Claudia Lederman\",\"doi\":\"10.1007/s00526-024-02741-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider viscosity solutions to two-phase free boundary problems for the <i>p</i>(<i>x</i>)-Laplacian with non-zero right hand side. We prove that flat free boundaries are <span>\\\\(C^{1,\\\\gamma }\\\\)</span>. No assumption on the Lipschitz continuity of solutions is made. These regularity results are the first ones in literature for two-phase free boundary problems for the <i>p</i>(<i>x</i>)-Laplacian and also for two-phase problems for singular/degenerate operators with non-zero right hand side. They are new even when <span>\\\\(p(x)\\\\equiv p\\\\)</span>, i.e., for the <i>p</i>-Laplacian. The fact that our results hold for merely viscosity solutions allows a wide applicability.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02741-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02741-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了具有非零右边的 p(x)-Laplacian 两相自由边界问题的粘性解。我们证明平面自由边界是(C^{1,\gamma }\ )。我们没有假设解的 Lipschitz 连续性。对于 p(x)-Laplacian 的两相自由边界问题以及具有非零右边的奇异/退化算子的两相问题,这些正则性结果是文献中首次出现的。即使当 \(p(x)\equiv p\), 即 p-拉普拉卡矩时,这些结果也是新的。我们的结果仅适用于粘性解,这一点使其具有广泛的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularity of flat free boundaries for two-phase p(x)-Laplacian problems with right hand side

We consider viscosity solutions to two-phase free boundary problems for the p(x)-Laplacian with non-zero right hand side. We prove that flat free boundaries are \(C^{1,\gamma }\). No assumption on the Lipschitz continuity of solutions is made. These regularity results are the first ones in literature for two-phase free boundary problems for the p(x)-Laplacian and also for two-phase problems for singular/degenerate operators with non-zero right hand side. They are new even when \(p(x)\equiv p\), i.e., for the p-Laplacian. The fact that our results hold for merely viscosity solutions allows a wide applicability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信