二维时间分数移动/非移动平流-弥散模型的高效高阶两级显式/隐式数值方案

IF 1.7 4区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Eric Ngondiep
{"title":"二维时间分数移动/非移动平流-弥散模型的高效高阶两级显式/隐式数值方案","authors":"Eric Ngondiep","doi":"10.1002/fld.5296","DOIUrl":null,"url":null,"abstract":"<p>This article constructs a new two-level explicit/implicit numerical scheme in an approximate solution for the two-dimensional time fractional mobile/immobile advection-dispersion problem. The stability and error estimates of the proposed technique are deeply analyzed in the <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mi>∞</mi>\n </mrow>\n </msup>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mi>T</mi>\n <mo>;</mo>\n <msup>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$$ {L}^{\\infty}\\left(0,T;{L}^2\\right) $$</annotation>\n </semantics></math>-norm. The developed approach is less time consuming, fourth-order in space and temporal accurate of order <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>(</mo>\n <msup>\n <mrow>\n <mi>k</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n <mo>−</mo>\n <mfrac>\n <mrow>\n <mi>λ</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </mfrac>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$$ O\\left({k}^{2-\\frac{\\lambda }{2}}\\right) $$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation>$$ k $$</annotation>\n </semantics></math> is the time step and <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n </mrow>\n <annotation>$$ \\lambda $$</annotation>\n </semantics></math> denotes a positive parameter less than 1. This result shows that the two-level explicit/implicit formulation is faster and more efficient than a large class of numerical schemes widely discussed in the literature for the considered problem. Numerical experiments are performed to verify the theoretical studies and to demonstrate the efficiency of the new numerical method.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 8","pages":"1305-1336"},"PeriodicalIF":1.7000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient high-order two-level explicit/implicit numerical scheme for two-dimensional time fractional mobile/immobile advection-dispersion model\",\"authors\":\"Eric Ngondiep\",\"doi\":\"10.1002/fld.5296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article constructs a new two-level explicit/implicit numerical scheme in an approximate solution for the two-dimensional time fractional mobile/immobile advection-dispersion problem. The stability and error estimates of the proposed technique are deeply analyzed in the <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <mrow>\\n <mi>∞</mi>\\n </mrow>\\n </msup>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mi>T</mi>\\n <mo>;</mo>\\n <msup>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ {L}^{\\\\infty}\\\\left(0,T;{L}^2\\\\right) $$</annotation>\\n </semantics></math>-norm. The developed approach is less time consuming, fourth-order in space and temporal accurate of order <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>O</mi>\\n <mo>(</mo>\\n <msup>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n <mo>−</mo>\\n <mfrac>\\n <mrow>\\n <mi>λ</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </mfrac>\\n </mrow>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ O\\\\left({k}^{2-\\\\frac{\\\\lambda }{2}}\\\\right) $$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation>$$ k $$</annotation>\\n </semantics></math> is the time step and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>λ</mi>\\n </mrow>\\n <annotation>$$ \\\\lambda $$</annotation>\\n </semantics></math> denotes a positive parameter less than 1. This result shows that the two-level explicit/implicit formulation is faster and more efficient than a large class of numerical schemes widely discussed in the literature for the considered problem. Numerical experiments are performed to verify the theoretical studies and to demonstrate the efficiency of the new numerical method.</p>\",\"PeriodicalId\":50348,\"journal\":{\"name\":\"International Journal for Numerical Methods in Fluids\",\"volume\":\"96 8\",\"pages\":\"1305-1336\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fld.5296\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5296","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文构建了一种新的两级显式/隐式数值方案,用于近似求解二维时间分数移动/非移动平流-分散问题。本文深入分析了所提技术的稳定性和误差估计。这一结果表明,对于所考虑的问题,两级显式/隐式表述比文献中广泛讨论的一大类数值方案更快、更有效。为了验证理论研究并证明新数值方法的效率,我们进行了数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An efficient high-order two-level explicit/implicit numerical scheme for two-dimensional time fractional mobile/immobile advection-dispersion model

An efficient high-order two-level explicit/implicit numerical scheme for two-dimensional time fractional mobile/immobile advection-dispersion model

This article constructs a new two-level explicit/implicit numerical scheme in an approximate solution for the two-dimensional time fractional mobile/immobile advection-dispersion problem. The stability and error estimates of the proposed technique are deeply analyzed in the L ( 0 , T ; L 2 ) $$ {L}^{\infty}\left(0,T;{L}^2\right) $$ -norm. The developed approach is less time consuming, fourth-order in space and temporal accurate of order O ( k 2 λ 2 ) $$ O\left({k}^{2-\frac{\lambda }{2}}\right) $$ , where k $$ k $$ is the time step and λ $$ \lambda $$ denotes a positive parameter less than 1. This result shows that the two-level explicit/implicit formulation is faster and more efficient than a large class of numerical schemes widely discussed in the literature for the considered problem. Numerical experiments are performed to verify the theoretical studies and to demonstrate the efficiency of the new numerical method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal for Numerical Methods in Fluids
International Journal for Numerical Methods in Fluids 物理-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
111
审稿时长
8 months
期刊介绍: The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction. Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review. The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信