{"title":"深度学习增强型高光谱成像技术用于食源性病原体的快速识别和分类","authors":"Hanjing Ge","doi":"10.2174/0115734110287027240427064546","DOIUrl":null,"url":null,"abstract":"Background: Bacterial cellulose (BC) is a versatile biomaterial with numerous applications, and the identification of bacterial strains that produce it is of great importance. This study explores the effectiveness of a Stacked Autoencoder (SAE)-based deep learning method for the classification of bacterial cellulose-producing bacteria. Objective: The primary objective of this research is to assess the potential of SAE-based classification models in accurately identifying and classifying bacterial cellulose-producing bacteria, with a particular focus on strain GZ-01. objective: The primary objective of this research is to assess the potential of SAE-based classification models in accurately identifying and classifying bacterial cellulose-producing bacteria, with a particular focus on strain GZ-01. Methods: Strain GZ-01 was isolated and subjected to a comprehensive characterization process, including morphological observations, physiological and biochemical analysis, and 16S rDNA sequencing. These methods were employed to determine the identity of strain GZ-01, ultimately recognized as Acetobacter Okinawa. The study compares the performance of SAE-based classification models to traditional methods like Principal Component Analysis (PCA). Results: The SAE-based classifier exhibits outstanding performance, achieving an impressive accuracy of 94.9% in the recognition and classification of bacterial cellulose-producing bacteria. This approach surpasses the efficacy of conventional PCA in handling the complexities of this classification task. Conclusion: The findings from this research highlight the immense potential of utilizing nanotechnology- driven data analysis methods, such as Stacked Autoencoders, in the realm of bacterial cellulose research. These advanced techniques offer a promising avenue for enhancing the efficiency and accuracy of bacterial cellulose-producing bacteria classification, which has significant implications for various applications in biotechnology and materials science.","PeriodicalId":10742,"journal":{"name":"Current Analytical Chemistry","volume":"46 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-enhanced Hyperspectral Imaging for the Rapid Identification and Classification of Foodborne Pathogens\",\"authors\":\"Hanjing Ge\",\"doi\":\"10.2174/0115734110287027240427064546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Bacterial cellulose (BC) is a versatile biomaterial with numerous applications, and the identification of bacterial strains that produce it is of great importance. This study explores the effectiveness of a Stacked Autoencoder (SAE)-based deep learning method for the classification of bacterial cellulose-producing bacteria. Objective: The primary objective of this research is to assess the potential of SAE-based classification models in accurately identifying and classifying bacterial cellulose-producing bacteria, with a particular focus on strain GZ-01. objective: The primary objective of this research is to assess the potential of SAE-based classification models in accurately identifying and classifying bacterial cellulose-producing bacteria, with a particular focus on strain GZ-01. Methods: Strain GZ-01 was isolated and subjected to a comprehensive characterization process, including morphological observations, physiological and biochemical analysis, and 16S rDNA sequencing. These methods were employed to determine the identity of strain GZ-01, ultimately recognized as Acetobacter Okinawa. The study compares the performance of SAE-based classification models to traditional methods like Principal Component Analysis (PCA). Results: The SAE-based classifier exhibits outstanding performance, achieving an impressive accuracy of 94.9% in the recognition and classification of bacterial cellulose-producing bacteria. This approach surpasses the efficacy of conventional PCA in handling the complexities of this classification task. Conclusion: The findings from this research highlight the immense potential of utilizing nanotechnology- driven data analysis methods, such as Stacked Autoencoders, in the realm of bacterial cellulose research. These advanced techniques offer a promising avenue for enhancing the efficiency and accuracy of bacterial cellulose-producing bacteria classification, which has significant implications for various applications in biotechnology and materials science.\",\"PeriodicalId\":10742,\"journal\":{\"name\":\"Current Analytical Chemistry\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734110287027240427064546\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0115734110287027240427064546","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Deep Learning-enhanced Hyperspectral Imaging for the Rapid Identification and Classification of Foodborne Pathogens
Background: Bacterial cellulose (BC) is a versatile biomaterial with numerous applications, and the identification of bacterial strains that produce it is of great importance. This study explores the effectiveness of a Stacked Autoencoder (SAE)-based deep learning method for the classification of bacterial cellulose-producing bacteria. Objective: The primary objective of this research is to assess the potential of SAE-based classification models in accurately identifying and classifying bacterial cellulose-producing bacteria, with a particular focus on strain GZ-01. objective: The primary objective of this research is to assess the potential of SAE-based classification models in accurately identifying and classifying bacterial cellulose-producing bacteria, with a particular focus on strain GZ-01. Methods: Strain GZ-01 was isolated and subjected to a comprehensive characterization process, including morphological observations, physiological and biochemical analysis, and 16S rDNA sequencing. These methods were employed to determine the identity of strain GZ-01, ultimately recognized as Acetobacter Okinawa. The study compares the performance of SAE-based classification models to traditional methods like Principal Component Analysis (PCA). Results: The SAE-based classifier exhibits outstanding performance, achieving an impressive accuracy of 94.9% in the recognition and classification of bacterial cellulose-producing bacteria. This approach surpasses the efficacy of conventional PCA in handling the complexities of this classification task. Conclusion: The findings from this research highlight the immense potential of utilizing nanotechnology- driven data analysis methods, such as Stacked Autoencoders, in the realm of bacterial cellulose research. These advanced techniques offer a promising avenue for enhancing the efficiency and accuracy of bacterial cellulose-producing bacteria classification, which has significant implications for various applications in biotechnology and materials science.
期刊介绍:
Current Analytical Chemistry publishes full-length/mini reviews and original research articles on the most recent advances in analytical chemistry. All aspects of the field are represented, including analytical methodology, techniques, and instrumentation in both fundamental and applied research topics of interest to the broad readership of the journal. Current Analytical Chemistry strives to serve as an authoritative source of information in analytical chemistry and in related applications such as biochemical analysis, pharmaceutical research, quantitative biological imaging, novel sensors, and nanotechnology.