{"title":"利用配置文件相似度指标扩展对数正态响应时间模型,改进异常测试行为的检测","authors":"Gregory M. Hurtz, Regi Mucino","doi":"10.1111/jedm.12395","DOIUrl":null,"url":null,"abstract":"<p>The Lognormal Response Time (LNRT) model measures the speed of test-takers relative to the normative time demands of items on a test. The resulting speed parameters and model residuals are often analyzed for evidence of anomalous test-taking behavior associated with fast and poorly fitting response time patterns. Extending this model, we demonstrate the connection between the existing LNRT model parameters and the “level” component of profile similarity, and we define two new parameters for the LNRT model representing profile “dispersion” and “shape.” We show that while the LNRT model measures level (speed), profile dispersion and shape are conflated in model residuals, and that distinguishing them provides meaningful and useful parameters for identifying anomalous testing behavior. Results from data in a situation where many test-takers gained preknowledge of test items revealed that profile shape, not currently measured in the LNRT model, was the most sensitive response time index to the abnormal test-taking behavior patterns. Results strongly support expanding the LNRT model to measure not only each test-taker's level of speed, but also the dispersion and shape of their response time profiles.</p>","PeriodicalId":47871,"journal":{"name":"Journal of Educational Measurement","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expanding the Lognormal Response Time Model Using Profile Similarity Metrics to Improve the Detection of Anomalous Testing Behavior\",\"authors\":\"Gregory M. Hurtz, Regi Mucino\",\"doi\":\"10.1111/jedm.12395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Lognormal Response Time (LNRT) model measures the speed of test-takers relative to the normative time demands of items on a test. The resulting speed parameters and model residuals are often analyzed for evidence of anomalous test-taking behavior associated with fast and poorly fitting response time patterns. Extending this model, we demonstrate the connection between the existing LNRT model parameters and the “level” component of profile similarity, and we define two new parameters for the LNRT model representing profile “dispersion” and “shape.” We show that while the LNRT model measures level (speed), profile dispersion and shape are conflated in model residuals, and that distinguishing them provides meaningful and useful parameters for identifying anomalous testing behavior. Results from data in a situation where many test-takers gained preknowledge of test items revealed that profile shape, not currently measured in the LNRT model, was the most sensitive response time index to the abnormal test-taking behavior patterns. Results strongly support expanding the LNRT model to measure not only each test-taker's level of speed, but also the dispersion and shape of their response time profiles.</p>\",\"PeriodicalId\":47871,\"journal\":{\"name\":\"Journal of Educational Measurement\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Educational Measurement\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jedm.12395\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PSYCHOLOGY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational Measurement","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jedm.12395","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PSYCHOLOGY, APPLIED","Score":null,"Total":0}
Expanding the Lognormal Response Time Model Using Profile Similarity Metrics to Improve the Detection of Anomalous Testing Behavior
The Lognormal Response Time (LNRT) model measures the speed of test-takers relative to the normative time demands of items on a test. The resulting speed parameters and model residuals are often analyzed for evidence of anomalous test-taking behavior associated with fast and poorly fitting response time patterns. Extending this model, we demonstrate the connection between the existing LNRT model parameters and the “level” component of profile similarity, and we define two new parameters for the LNRT model representing profile “dispersion” and “shape.” We show that while the LNRT model measures level (speed), profile dispersion and shape are conflated in model residuals, and that distinguishing them provides meaningful and useful parameters for identifying anomalous testing behavior. Results from data in a situation where many test-takers gained preknowledge of test items revealed that profile shape, not currently measured in the LNRT model, was the most sensitive response time index to the abnormal test-taking behavior patterns. Results strongly support expanding the LNRT model to measure not only each test-taker's level of speed, but also the dispersion and shape of their response time profiles.
期刊介绍:
The Journal of Educational Measurement (JEM) publishes original measurement research, provides reviews of measurement publications, and reports on innovative measurement applications. The topics addressed will interest those concerned with the practice of measurement in field settings, as well as be of interest to measurement theorists. In addition to presenting new contributions to measurement theory and practice, JEM also serves as a vehicle for improving educational measurement applications in a variety of settings.