巴拿赫空间上的群表示

IF 0.8 3区 数学 Q2 MATHEMATICS
Stefano Ferri, Camilo Gómez, Matthias Neufang
{"title":"巴拿赫空间上的群表示","authors":"Stefano Ferri, Camilo Gómez, Matthias Neufang","doi":"10.1090/proc/16499","DOIUrl":null,"url":null,"abstract":"<p>We establish a general framework for representability of a metric group on a (well-behaved) class of Banach spaces. More precisely, let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper G\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">G</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a topological group, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">A</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {A}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a unital symmetric <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript asterisk\"> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msup> <mml:annotation encoding=\"application/x-tex\">C^*</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-subalgebra of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper U normal upper C left-parenthesis script upper G right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">U</mml:mi> <mml:mi mathvariant=\"normal\">C</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\"script\">G</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathrm {UC}(\\mathcal {G})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the algebra of bounded uniformly continuous functions on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper G\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">G</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Generalizing the notion of a stable metric, we study <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">A</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {A}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-metrics <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"delta\"> <mml:semantics> <mml:mi>δ<!-- δ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\delta</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, i.e., the function <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"delta left-parenthesis e comma dot right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>δ<!-- δ --></mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>e</mml:mi> <mml:mo>,</mml:mo> <mml:mo>⋅<!-- ⋅ --></mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\delta (e, \\cdot )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> belongs to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">A</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {A}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; the case <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A equals upper W upper A upper P left-parenthesis script upper G right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"script\">A</mml:mi> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>W</mml:mi> <mml:mspace width=\"-0.7mm\" /> <mml:mi>A</mml:mi> <mml:mspace width=\"-0.2mm\" /> <mml:mi>P</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\"script\">G</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {A}=W\\hskip -0.7mm A\\hskip -0.2mm P(\\mathcal {G})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the algebra of weakly almost periodic functions on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper G\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">G</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, recovers stability. If the topology of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is induced by a left invariant metric <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\"> <mml:semantics> <mml:mi>d</mml:mi> <mml:annotation encoding=\"application/x-tex\">d</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we prove that <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">A</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {A}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> determines the topology of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper G\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">G</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> if and only if <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\"> <mml:semantics> <mml:mi>d</mml:mi> <mml:annotation encoding=\"application/x-tex\">d</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is uniformly equivalent to a left invariant <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">A</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {A}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-metric. As an application, we show that the additive group of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C left-bracket 0 comma 1 right-bracket\"> <mml:semantics> <mml:mrow> <mml:mi>C</mml:mi> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">C[0,1]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is not reflexively representable; this is a new proof of Megrelishvili [<italic>Topological transformation groups: selected topics</italic>, Elsevier, 2007, Question 6.7] (the problem was already solved by Ferri and Galindo [Studia Math. 193 (2009), pp. 99–108] with different methods and later the results were generalized by Yaacov, Berenstein, and Ferri [Math. Z. 267 (2011), pp.129–138]). Let now <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper G\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">G</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a metric group, and assume <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A subset-of-or-equal-to normal upper L normal upper U normal upper C left-parenthesis script upper G right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"script\">A</mml:mi> </mml:mrow> <mml:mo>⊆<!-- ⊆ --></mml:mo> <mml:mrow> <mml:mi mathvariant=\"normal\">L</mml:mi> <mml:mi mathvariant=\"normal\">U</mml:mi> <mml:mi mathvariant=\"normal\">C</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\"script\">G</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {A}\\subseteq \\mathrm {LUC}(\\mathcal {G})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the algebra of bounded left uniformly continuous functions on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper G\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">G</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, is a unital <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript asterisk\"> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msup> <mml:annotation encoding=\"application/x-tex\">C^*</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebra which is the uniform closure of coefficients of representations of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper G\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">G</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on members of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper F\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">F</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathscr {F}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper F\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">F</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathscr {F}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a class of Banach spaces closed under <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l 2\"> <mml:semantics> <mml:msub> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\ell _2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-direct sums. We prove that <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">A</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {A}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> determines the topology of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper G\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">G</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> if and only if <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper G\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">G</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> embeds into the isometry group of a member of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper F\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">F</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathscr {F}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, equipped with the weak operator topology. As applications, we obtain characterizations of unitary and reflexive representability.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Representations of groups on Banach spaces\",\"authors\":\"Stefano Ferri, Camilo Gómez, Matthias Neufang\",\"doi\":\"10.1090/proc/16499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We establish a general framework for representability of a metric group on a (well-behaved) class of Banach spaces. More precisely, let <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper G\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">G</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a topological group, and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper A\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">A</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {A}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a unital symmetric <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript asterisk\\\"> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">C^*</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-subalgebra of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper U normal upper C left-parenthesis script upper G right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">U</mml:mi> <mml:mi mathvariant=\\\"normal\\\">C</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">G</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {UC}(\\\\mathcal {G})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the algebra of bounded uniformly continuous functions on <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper G\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">G</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Generalizing the notion of a stable metric, we study <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper A\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">A</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {A}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-metrics <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"delta\\\"> <mml:semantics> <mml:mi>δ<!-- δ --></mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\delta</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, i.e., the function <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"delta left-parenthesis e comma dot right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>δ<!-- δ --></mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>e</mml:mi> <mml:mo>,</mml:mo> <mml:mo>⋅<!-- ⋅ --></mml:mo> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\delta (e, \\\\cdot )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> belongs to <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper A\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">A</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {A}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; the case <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper A equals upper W upper A upper P left-parenthesis script upper G right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">A</mml:mi> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>W</mml:mi> <mml:mspace width=\\\"-0.7mm\\\" /> <mml:mi>A</mml:mi> <mml:mspace width=\\\"-0.2mm\\\" /> <mml:mi>P</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">G</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {A}=W\\\\hskip -0.7mm A\\\\hskip -0.2mm P(\\\\mathcal {G})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the algebra of weakly almost periodic functions on <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper G\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">G</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, recovers stability. If the topology of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is induced by a left invariant metric <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d\\\"> <mml:semantics> <mml:mi>d</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">d</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we prove that <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper A\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">A</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {A}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> determines the topology of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper G\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">G</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> if and only if <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d\\\"> <mml:semantics> <mml:mi>d</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">d</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is uniformly equivalent to a left invariant <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper A\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">A</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {A}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-metric. As an application, we show that the additive group of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C left-bracket 0 comma 1 right-bracket\\\"> <mml:semantics> <mml:mrow> <mml:mi>C</mml:mi> <mml:mo stretchy=\\\"false\\\">[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\\\"false\\\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">C[0,1]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is not reflexively representable; this is a new proof of Megrelishvili [<italic>Topological transformation groups: selected topics</italic>, Elsevier, 2007, Question 6.7] (the problem was already solved by Ferri and Galindo [Studia Math. 193 (2009), pp. 99–108] with different methods and later the results were generalized by Yaacov, Berenstein, and Ferri [Math. Z. 267 (2011), pp.129–138]). Let now <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper G\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">G</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a metric group, and assume <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper A subset-of-or-equal-to normal upper L normal upper U normal upper C left-parenthesis script upper G right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">A</mml:mi> </mml:mrow> <mml:mo>⊆<!-- ⊆ --></mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">L</mml:mi> <mml:mi mathvariant=\\\"normal\\\">U</mml:mi> <mml:mi mathvariant=\\\"normal\\\">C</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">G</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {A}\\\\subseteq \\\\mathrm {LUC}(\\\\mathcal {G})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the algebra of bounded left uniformly continuous functions on <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper G\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">G</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, is a unital <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript asterisk\\\"> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">C^*</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebra which is the uniform closure of coefficients of representations of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper G\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">G</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on members of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper F\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">F</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathscr {F}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper F\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">F</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathscr {F}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a class of Banach spaces closed under <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script l 2\\\"> <mml:semantics> <mml:msub> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\ell _2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-direct sums. We prove that <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper A\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">A</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {A}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> determines the topology of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper G\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">G</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> if and only if <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper G\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">G</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> embeds into the isometry group of a member of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper F\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">F</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathscr {F}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, equipped with the weak operator topology. As applications, we obtain characterizations of unitary and reflexive representability.</p>\",\"PeriodicalId\":20696,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16499\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16499","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了在一类(良好的)巴拿赫空间上度量群的可表示性的一般框架。更确切地说,让 G \mathcal {G} 是一个拓扑群,而 A \mathcal {A} 是 U C ( G ) \mathrm {UC}(\mathcal {G}) 的有界对称 C ∗ C^* - 子代数,即 G \mathcal {G} 上有界均匀连续函数的代数。从稳定度量的概念出发,我们研究 A \mathcal {A} -metrics δ \delta , 即、函数 δ ( e , ⋅ ) \delta (e, \cdot ) 属于 A \mathcal {A};在 A = W A P ( G ) \mathcal {A}=W\hskip -0.7mm A\hskip -0.2mm P(\mathcal {G}) 的情况下,G 上弱几乎周期函数的代数 恢复稳定。如果 G G 的拓扑由左不变度量 d d 引起,我们证明当且仅当 d d 均匀等价于左不变 A \mathcal {A} -度量时,A \mathcal {A} 决定 G \mathcal {G} 的拓扑。作为一个应用,我们证明了 C [ 0 , 1 ] 的加法群 C[0,1] 不可反身表示;这是 Megrelishvili [Topological transformation groups: selected topics, Elsevier, 2007, Question 6.7] 的一个新证明(这个问题早在 G [0 , 1] C[0,1] 中就由 Megrelishvili 解决了)。(费里和加林多 [Studia Math. 193 (2009), pp. 99-108] 用不同的方法解决了这个问题,后来雅科夫、贝伦斯坦和费里 [Math. Z. 267 (2011), pp.129-138] 对结果进行了推广)。现在让 G (mathcal {G})是一个度量群,并假设 A ⊆ L U C ( G ) \mathcal {A} \subseteq \mathrm {LUC}(\mathcal {G}) , G (mathcal {G})上有界左均匀连续函数的代数,是一个独元 C ∗ \mathrm {LUC}(\mathcal {G})。 是一个一元 C ∗ C^* -代数,它是 G 在 F (mathscr {F} 的成员)上的表示的系数的均匀闭包。 其中,F 是一类在 ℓ 2 \ell _2 -direct sums 下封闭的巴拿赫空间。我们证明,当且仅当 G嵌入到 F 的一个成员的等几何群中时,A 才决定 G 的拓扑结构。 的等几何群中,并配备弱算子拓扑。作为应用,我们得到了单元可表示性和反射可表示性的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representations of groups on Banach spaces

We establish a general framework for representability of a metric group on a (well-behaved) class of Banach spaces. More precisely, let G \mathcal {G} be a topological group, and A \mathcal {A} a unital symmetric C C^* -subalgebra of U C ( G ) \mathrm {UC}(\mathcal {G}) , the algebra of bounded uniformly continuous functions on G \mathcal {G} . Generalizing the notion of a stable metric, we study A \mathcal {A} -metrics δ \delta , i.e., the function δ ( e , ) \delta (e, \cdot ) belongs to A \mathcal {A} ; the case A = W A P ( G ) \mathcal {A}=W\hskip -0.7mm A\hskip -0.2mm P(\mathcal {G}) , the algebra of weakly almost periodic functions on G \mathcal {G} , recovers stability. If the topology of G G is induced by a left invariant metric d d , we prove that A \mathcal {A} determines the topology of G \mathcal {G} if and only if d d is uniformly equivalent to a left invariant A \mathcal {A} -metric. As an application, we show that the additive group of C [ 0 , 1 ] C[0,1] is not reflexively representable; this is a new proof of Megrelishvili [Topological transformation groups: selected topics, Elsevier, 2007, Question 6.7] (the problem was already solved by Ferri and Galindo [Studia Math. 193 (2009), pp. 99–108] with different methods and later the results were generalized by Yaacov, Berenstein, and Ferri [Math. Z. 267 (2011), pp.129–138]). Let now G \mathcal {G} be a metric group, and assume A L U C ( G ) \mathcal {A}\subseteq \mathrm {LUC}(\mathcal {G}) , the algebra of bounded left uniformly continuous functions on G \mathcal {G} , is a unital C C^* -algebra which is the uniform closure of coefficients of representations of G \mathcal {G} on members of F \mathscr {F} , where F \mathscr {F} is a class of Banach spaces closed under 2 \ell _2 -direct sums. We prove that A \mathcal {A} determines the topology of G \mathcal {G} if and only if G \mathcal {G} embeds into the isometry group of a member of F \mathscr {F} , equipped with the weak operator topology. As applications, we obtain characterizations of unitary and reflexive representability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
207
审稿时长
2-4 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信