{"title":"用边界条带稳定乘积流形上的波","authors":"Ruoyu Wang","doi":"10.1090/proc/16242","DOIUrl":null,"url":null,"abstract":"<p>We show that a transversely geometrically controlling boundary damping strip is sufficient but not necessary for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t Superscript negative 1 slash 2\"> <mml:semantics> <mml:msup> <mml:mi>t</mml:mi> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">t^{-1/2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-decay of waves on product manifolds. We give a general scheme to turn resolvent estimates for impedance problems on cross-sections to wave decay on product manifolds.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilisation of waves on product manifolds by boundary strips\",\"authors\":\"Ruoyu Wang\",\"doi\":\"10.1090/proc/16242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that a transversely geometrically controlling boundary damping strip is sufficient but not necessary for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"t Superscript negative 1 slash 2\\\"> <mml:semantics> <mml:msup> <mml:mi>t</mml:mi> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">t^{-1/2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-decay of waves on product manifolds. We give a general scheme to turn resolvent estimates for impedance problems on cross-sections to wave decay on product manifolds.</p>\",\"PeriodicalId\":20696,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16242\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16242","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们证明了横向几何控制边界阻尼条对于乘积流形上波的 t - 1 / 2 t^{-1/2} 衰减是足够的,而不是必要的。我们给出了将横截面上阻抗问题的解析估计转化为积流形上波衰减的一般方案。
Stabilisation of waves on product manifolds by boundary strips
We show that a transversely geometrically controlling boundary damping strip is sufficient but not necessary for t−1/2t^{-1/2}-decay of waves on product manifolds. We give a general scheme to turn resolvent estimates for impedance problems on cross-sections to wave decay on product manifolds.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.