锚定纳米纤维素基碳气凝胶的二氧化锰纳米片阵列可实现锌-二氧化锰电池的高可逆性和快速电荷转移

IF 23.2 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Qingshuang Zhao, Han Zhang, Xuan Wang, Ting Xu, Meng Zhang, Yaxuan Wang, Lizhong Zhu, Shuhua Tong, Xing Zhou, Jie Li, Weiwei Huan, Zhanhua Huang, Chuanling Si
{"title":"锚定纳米纤维素基碳气凝胶的二氧化锰纳米片阵列可实现锌-二氧化锰电池的高可逆性和快速电荷转移","authors":"Qingshuang Zhao,&nbsp;Han Zhang,&nbsp;Xuan Wang,&nbsp;Ting Xu,&nbsp;Meng Zhang,&nbsp;Yaxuan Wang,&nbsp;Lizhong Zhu,&nbsp;Shuhua Tong,&nbsp;Xing Zhou,&nbsp;Jie Li,&nbsp;Weiwei Huan,&nbsp;Zhanhua Huang,&nbsp;Chuanling Si","doi":"10.1007/s42114-024-00900-y","DOIUrl":null,"url":null,"abstract":"<div><p>Zn-MnO<sub>2</sub> batteries are eco-friendly energy storage devices, but their practical application is hindered by challenges such as low conductivity, sluggish Zn<sup>2+</sup> diffusion kinetics, and instability in the crystal structure of manganese dioxide (MnO<sub>2</sub>) cathode materials during Zn<sup>2+</sup> insertion/extraction. In this work, a composite nanocellulose-based carbon aerogel@MnO<sub>2</sub> (CA@MnO<sub>2</sub>) cathode with enhanced Zn<sup>2+</sup> insertion/de-insertion kinetics and storage capacity was fabricated by bi-directional freezing, carbonization, and following hydrothermal deposition. The nanocellulose-based carbon aerogels with ordered porous structure and high specific surface area served as the substrate, which facilitated the rapid Zn<sup>2+</sup> migration and efficient electrode contact interface. In the two-electrode system, the CA@MnO<sub>2</sub> can provide a reversible specific capacity of 480 mAh g<sup>−1</sup> at 0.5 A g<sup>−1</sup> and a high multiplicative capacity of 160 mAh g<sup>−1</sup> at 5 A g<sup>−1</sup> with outstanding stability of operation over 3000 cycles. The assembled Zn//CA@MnO<sub>2</sub> batteries attained a remarkable specific capacitance of 397 mAh g<sup>−1</sup> at a current density of 0.1 A g<sup>−1</sup>. This study provides a feasible route for the preparation of high-performance Zn-ion batteries.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":null,"pages":null},"PeriodicalIF":23.2000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly reversible and rapid charge transfer Zn-MnO2 battery by MnO2 nanosheet arrays anchored nanocellulose-based carbon aerogel\",\"authors\":\"Qingshuang Zhao,&nbsp;Han Zhang,&nbsp;Xuan Wang,&nbsp;Ting Xu,&nbsp;Meng Zhang,&nbsp;Yaxuan Wang,&nbsp;Lizhong Zhu,&nbsp;Shuhua Tong,&nbsp;Xing Zhou,&nbsp;Jie Li,&nbsp;Weiwei Huan,&nbsp;Zhanhua Huang,&nbsp;Chuanling Si\",\"doi\":\"10.1007/s42114-024-00900-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Zn-MnO<sub>2</sub> batteries are eco-friendly energy storage devices, but their practical application is hindered by challenges such as low conductivity, sluggish Zn<sup>2+</sup> diffusion kinetics, and instability in the crystal structure of manganese dioxide (MnO<sub>2</sub>) cathode materials during Zn<sup>2+</sup> insertion/extraction. In this work, a composite nanocellulose-based carbon aerogel@MnO<sub>2</sub> (CA@MnO<sub>2</sub>) cathode with enhanced Zn<sup>2+</sup> insertion/de-insertion kinetics and storage capacity was fabricated by bi-directional freezing, carbonization, and following hydrothermal deposition. The nanocellulose-based carbon aerogels with ordered porous structure and high specific surface area served as the substrate, which facilitated the rapid Zn<sup>2+</sup> migration and efficient electrode contact interface. In the two-electrode system, the CA@MnO<sub>2</sub> can provide a reversible specific capacity of 480 mAh g<sup>−1</sup> at 0.5 A g<sup>−1</sup> and a high multiplicative capacity of 160 mAh g<sup>−1</sup> at 5 A g<sup>−1</sup> with outstanding stability of operation over 3000 cycles. The assembled Zn//CA@MnO<sub>2</sub> batteries attained a remarkable specific capacitance of 397 mAh g<sup>−1</sup> at a current density of 0.1 A g<sup>−1</sup>. This study provides a feasible route for the preparation of high-performance Zn-ion batteries.</p></div>\",\"PeriodicalId\":7220,\"journal\":{\"name\":\"Advanced Composites and Hybrid Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites and Hybrid Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42114-024-00900-y\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-00900-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

Zn-MnO2 电池是一种环保型储能设备,但其实际应用却受到诸多挑战的阻碍,例如低电导率、缓慢的 Zn2+ 扩散动力学以及二氧化锰(MnO2)阴极材料在 Zn2+ 插入/萃取过程中晶体结构的不稳定性。在这项工作中,通过双向冷冻、碳化和水热沉积,制备了一种具有增强的 Zn2+ 插入/脱出动力学和存储容量的复合纳米纤维素基碳气凝胶@MnO2(CA@MnO2)阴极。纳米纤维素基碳气凝胶具有有序的多孔结构和高比表面积,可作为基底,促进 Zn2+ 的快速迁移和高效的电极接触界面。在双电极系统中,CA@MnO2 在 0.5 A g-1 的条件下可提供 480 mAh g-1 的可逆比容量,在 5 A g-1 的条件下可提供 160 mAh g-1 的高倍容量,并且在 3000 次循环以上的运行中具有出色的稳定性。组装好的 Zn//CA@MnO2 电池在电流密度为 0.1 A g-1 时的比电容高达 397 mAh g-1。这项研究为制备高性能锌离子电池提供了一条可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Highly reversible and rapid charge transfer Zn-MnO2 battery by MnO2 nanosheet arrays anchored nanocellulose-based carbon aerogel

Highly reversible and rapid charge transfer Zn-MnO2 battery by MnO2 nanosheet arrays anchored nanocellulose-based carbon aerogel

Zn-MnO2 batteries are eco-friendly energy storage devices, but their practical application is hindered by challenges such as low conductivity, sluggish Zn2+ diffusion kinetics, and instability in the crystal structure of manganese dioxide (MnO2) cathode materials during Zn2+ insertion/extraction. In this work, a composite nanocellulose-based carbon aerogel@MnO2 (CA@MnO2) cathode with enhanced Zn2+ insertion/de-insertion kinetics and storage capacity was fabricated by bi-directional freezing, carbonization, and following hydrothermal deposition. The nanocellulose-based carbon aerogels with ordered porous structure and high specific surface area served as the substrate, which facilitated the rapid Zn2+ migration and efficient electrode contact interface. In the two-electrode system, the CA@MnO2 can provide a reversible specific capacity of 480 mAh g−1 at 0.5 A g−1 and a high multiplicative capacity of 160 mAh g−1 at 5 A g−1 with outstanding stability of operation over 3000 cycles. The assembled Zn//CA@MnO2 batteries attained a remarkable specific capacitance of 397 mAh g−1 at a current density of 0.1 A g−1. This study provides a feasible route for the preparation of high-performance Zn-ion batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.00
自引率
21.40%
发文量
185
期刊介绍: Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field. The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest. Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials. Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信