{"title":"单层皱褶砷烯的创新建模:量子力学与有限元分析的桥梁","authors":"Peyman Aghdasi, Shayesteh Yousefi, Reza Ansari","doi":"10.1002/sia.7319","DOIUrl":null,"url":null,"abstract":"Current study presents a novel hybrid approach combining finite element modeling and density functional theory calculations to investigate the mechanical properties of monolayer puckered arsenene. The multiscale analysis in this study leverages finite element analysis as a distinctive approach, complementing the nano‐scale capabilities of density functional theory and molecular dynamics by overcoming limitations faced by these two methods in representing complex scenarios. Furthermore, finite element analysis demonstrates computational efficiency for larger structures, making it suitable for systems where atomistic simulations may be impractical. This hybrid methodology offers a unique framework for accurately predicting key properties, including elastic modulus and buckling force, by synergistically integrating the strengths of both computational techniques. In addition to demonstrating the effectiveness of our approach in accurately capturing material behavior, our findings shed light on fundamental aspects of nanoscale mechanics, with implications for various applications in nanotechnology, materials science, and structural engineering. By providing a deeper understanding of the mechanical response of 2D materials, our research contributes to advancing the field of nanoscale materials engineering and informs the design of innovative nanostructures with tailored mechanical properties.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":"81 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative modeling of monolayer puckered arsenene: Bridging quantum mechanics and finite element analysis\",\"authors\":\"Peyman Aghdasi, Shayesteh Yousefi, Reza Ansari\",\"doi\":\"10.1002/sia.7319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current study presents a novel hybrid approach combining finite element modeling and density functional theory calculations to investigate the mechanical properties of monolayer puckered arsenene. The multiscale analysis in this study leverages finite element analysis as a distinctive approach, complementing the nano‐scale capabilities of density functional theory and molecular dynamics by overcoming limitations faced by these two methods in representing complex scenarios. Furthermore, finite element analysis demonstrates computational efficiency for larger structures, making it suitable for systems where atomistic simulations may be impractical. This hybrid methodology offers a unique framework for accurately predicting key properties, including elastic modulus and buckling force, by synergistically integrating the strengths of both computational techniques. In addition to demonstrating the effectiveness of our approach in accurately capturing material behavior, our findings shed light on fundamental aspects of nanoscale mechanics, with implications for various applications in nanotechnology, materials science, and structural engineering. By providing a deeper understanding of the mechanical response of 2D materials, our research contributes to advancing the field of nanoscale materials engineering and informs the design of innovative nanostructures with tailored mechanical properties.\",\"PeriodicalId\":22062,\"journal\":{\"name\":\"Surface and Interface Analysis\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface and Interface Analysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/sia.7319\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface and Interface Analysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/sia.7319","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Innovative modeling of monolayer puckered arsenene: Bridging quantum mechanics and finite element analysis
Current study presents a novel hybrid approach combining finite element modeling and density functional theory calculations to investigate the mechanical properties of monolayer puckered arsenene. The multiscale analysis in this study leverages finite element analysis as a distinctive approach, complementing the nano‐scale capabilities of density functional theory and molecular dynamics by overcoming limitations faced by these two methods in representing complex scenarios. Furthermore, finite element analysis demonstrates computational efficiency for larger structures, making it suitable for systems where atomistic simulations may be impractical. This hybrid methodology offers a unique framework for accurately predicting key properties, including elastic modulus and buckling force, by synergistically integrating the strengths of both computational techniques. In addition to demonstrating the effectiveness of our approach in accurately capturing material behavior, our findings shed light on fundamental aspects of nanoscale mechanics, with implications for various applications in nanotechnology, materials science, and structural engineering. By providing a deeper understanding of the mechanical response of 2D materials, our research contributes to advancing the field of nanoscale materials engineering and informs the design of innovative nanostructures with tailored mechanical properties.
期刊介绍:
Surface and Interface Analysis is devoted to the publication of papers dealing with the development and application of techniques for the characterization of surfaces, interfaces and thin films. Papers dealing with standardization and quantification are particularly welcome, and also those which deal with the application of these techniques to industrial problems. Papers dealing with the purely theoretical aspects of the technique will also be considered. Review articles will be published; prior consultation with one of the Editors is advised in these cases. Papers must clearly be of scientific value in the field and will be submitted to two independent referees. Contributions must be in English and must not have been published elsewhere, and authors must agree not to communicate the same material for publication to any other journal. Authors are invited to submit their papers for publication to John Watts (UK only), Jose Sanz (Rest of Europe), John T. Grant (all non-European countries, except Japan) or R. Shimizu (Japan only).