利用 Levengberg-Marquardt 反向传播人工神经网络的磁流体力学切线双曲面纳米流体流过垂直拉伸表面

IF 2.8 4区 工程技术 Q2 MECHANICS
Bilal Ali, Shengjun Liu, Hong Juan Liu, Md Irfanul Haque Siddiqui
{"title":"利用 Levengberg-Marquardt 反向传播人工神经网络的磁流体力学切线双曲面纳米流体流过垂直拉伸表面","authors":"Bilal Ali, Shengjun Liu, Hong Juan Liu, Md Irfanul Haque Siddiqui","doi":"10.1080/10407782.2024.2348121","DOIUrl":null,"url":null,"abstract":"This analysis uses the Levenberg-Marquardt back propagation artificial neural networks (LM-BP-ANNs) approach to demonstrate the mathematical strategy of neural networks for the simulation of MHD Ta...","PeriodicalId":19183,"journal":{"name":"Numerical Heat Transfer, Part A: Applications","volume":"44 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetohydrodynamics tangent hyperbolic nanofluid flow across a vertical stretching surface using Levengberg-Marquardt back propagation artificial neural networks\",\"authors\":\"Bilal Ali, Shengjun Liu, Hong Juan Liu, Md Irfanul Haque Siddiqui\",\"doi\":\"10.1080/10407782.2024.2348121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This analysis uses the Levenberg-Marquardt back propagation artificial neural networks (LM-BP-ANNs) approach to demonstrate the mathematical strategy of neural networks for the simulation of MHD Ta...\",\"PeriodicalId\":19183,\"journal\":{\"name\":\"Numerical Heat Transfer, Part A: Applications\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Heat Transfer, Part A: Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10407782.2024.2348121\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Heat Transfer, Part A: Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10407782.2024.2348121","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

该分析采用 Levenberg-Marquardt 反向传播人工神经网络(LM-BP-ANNs)方法,展示了神经网络模拟 MHD Ta...的数学策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetohydrodynamics tangent hyperbolic nanofluid flow across a vertical stretching surface using Levengberg-Marquardt back propagation artificial neural networks
This analysis uses the Levenberg-Marquardt back propagation artificial neural networks (LM-BP-ANNs) approach to demonstrate the mathematical strategy of neural networks for the simulation of MHD Ta...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
10.00%
发文量
127
审稿时长
3.8 months
期刊介绍: Published 24 times per year, Numerical Heat Transfer, Part A: Applications covers numerically-based, results-oriented papers highlighting problems in heat transfer, mass transfer, and fluid flow. Underlying numerical solutions may be based either on available methodologies or on adaptations of moderate extensions of available methods. Experimental results which support the numerical solutions are also acceptable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信