Bilal Ali, Shengjun Liu, Hong Juan Liu, Md Irfanul Haque Siddiqui
{"title":"利用 Levengberg-Marquardt 反向传播人工神经网络的磁流体力学切线双曲面纳米流体流过垂直拉伸表面","authors":"Bilal Ali, Shengjun Liu, Hong Juan Liu, Md Irfanul Haque Siddiqui","doi":"10.1080/10407782.2024.2348121","DOIUrl":null,"url":null,"abstract":"This analysis uses the Levenberg-Marquardt back propagation artificial neural networks (LM-BP-ANNs) approach to demonstrate the mathematical strategy of neural networks for the simulation of MHD Ta...","PeriodicalId":19183,"journal":{"name":"Numerical Heat Transfer, Part A: Applications","volume":"44 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetohydrodynamics tangent hyperbolic nanofluid flow across a vertical stretching surface using Levengberg-Marquardt back propagation artificial neural networks\",\"authors\":\"Bilal Ali, Shengjun Liu, Hong Juan Liu, Md Irfanul Haque Siddiqui\",\"doi\":\"10.1080/10407782.2024.2348121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This analysis uses the Levenberg-Marquardt back propagation artificial neural networks (LM-BP-ANNs) approach to demonstrate the mathematical strategy of neural networks for the simulation of MHD Ta...\",\"PeriodicalId\":19183,\"journal\":{\"name\":\"Numerical Heat Transfer, Part A: Applications\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Heat Transfer, Part A: Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10407782.2024.2348121\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Heat Transfer, Part A: Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10407782.2024.2348121","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Magnetohydrodynamics tangent hyperbolic nanofluid flow across a vertical stretching surface using Levengberg-Marquardt back propagation artificial neural networks
This analysis uses the Levenberg-Marquardt back propagation artificial neural networks (LM-BP-ANNs) approach to demonstrate the mathematical strategy of neural networks for the simulation of MHD Ta...
期刊介绍:
Published 24 times per year, Numerical Heat Transfer, Part A: Applications covers numerically-based, results-oriented papers highlighting problems in heat transfer, mass transfer, and fluid flow. Underlying numerical solutions may be based either on available methodologies or on adaptations of moderate extensions of available methods. Experimental results which support the numerical solutions are also acceptable.