A. M. Babanlı, M. Balcı, M. Ovezov, G. Orazov, V. Sabyrov
{"title":"具有拉什巴自旋轨道相互作用的 DMS 椭圆形量子点的吸收系数","authors":"A. M. Babanlı, M. Balcı, M. Ovezov, G. Orazov, V. Sabyrov","doi":"10.1007/s10825-024-02174-5","DOIUrl":null,"url":null,"abstract":"<div><p>We study the absorption coefficient of a diluted magnetic semiconductor ellipsoidal quantum dot with Rashba spin–orbit coupling. The Schrödinger equation for a one-electron ellipsoidal quantum dot was solved within the framework of the effective mass approximation method. The wave vector and electron energy found during the solution were used to find an expression for the absorption coefficient. The article examines intraband optical transitions relative to changes in external parameters. The decrease in the absorption coefficient as a function of the energy of the incident photon was studied at different values of the magnetic field, the Rashba parameter, temperature, concentration of Mn atoms and the radius of the ellipsoid. According to the results obtained, these parameters significantly affect intraband optical transitions.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"23 4","pages":"751 - 758"},"PeriodicalIF":2.2000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Absorption coefficient of a DMS ellipsoid quantum dot with Rashba spin–orbit interaction\",\"authors\":\"A. M. Babanlı, M. Balcı, M. Ovezov, G. Orazov, V. Sabyrov\",\"doi\":\"10.1007/s10825-024-02174-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the absorption coefficient of a diluted magnetic semiconductor ellipsoidal quantum dot with Rashba spin–orbit coupling. The Schrödinger equation for a one-electron ellipsoidal quantum dot was solved within the framework of the effective mass approximation method. The wave vector and electron energy found during the solution were used to find an expression for the absorption coefficient. The article examines intraband optical transitions relative to changes in external parameters. The decrease in the absorption coefficient as a function of the energy of the incident photon was studied at different values of the magnetic field, the Rashba parameter, temperature, concentration of Mn atoms and the radius of the ellipsoid. According to the results obtained, these parameters significantly affect intraband optical transitions.</p></div>\",\"PeriodicalId\":620,\"journal\":{\"name\":\"Journal of Computational Electronics\",\"volume\":\"23 4\",\"pages\":\"751 - 758\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10825-024-02174-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02174-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Absorption coefficient of a DMS ellipsoid quantum dot with Rashba spin–orbit interaction
We study the absorption coefficient of a diluted magnetic semiconductor ellipsoidal quantum dot with Rashba spin–orbit coupling. The Schrödinger equation for a one-electron ellipsoidal quantum dot was solved within the framework of the effective mass approximation method. The wave vector and electron energy found during the solution were used to find an expression for the absorption coefficient. The article examines intraband optical transitions relative to changes in external parameters. The decrease in the absorption coefficient as a function of the energy of the incident photon was studied at different values of the magnetic field, the Rashba parameter, temperature, concentration of Mn atoms and the radius of the ellipsoid. According to the results obtained, these parameters significantly affect intraband optical transitions.
期刊介绍:
he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered.
In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.