{"title":"基于 SPF 方法的硅基 GaN HEMT 混合小信号模型参数提取","authors":"Peng Wei, Jiabin Deng, Wei Zhang, Jian Qin","doi":"10.1007/s10825-024-02168-3","DOIUrl":null,"url":null,"abstract":"<div><p>This article proposes a parameter extraction method suitable for Si substrate based GaN HEMT small signal equivalent circuit models. The proposed method is based on a swarm intelligence optimization algorithm, which improves efficiency and accuracy by introducing a slope penalty factor (SPF) method for the objective function, rather than simply minimizing the error between simulation and measurement. By using PSO, WOA, and PNC-WOA for validation, we have demonstrated the advantages of the SPF method in extracting small signal parameters using swarm intelligence optimization algorithms. It is suitable for complex small-signal models that can describe the GaN HEMT-on-Si substrates, even if working up to 40 GHz.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"23 3","pages":"516 - 524"},"PeriodicalIF":2.2000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid small-signal model parameter extraction for GaN HEMT-on-Si Substrates based on the SPF method\",\"authors\":\"Peng Wei, Jiabin Deng, Wei Zhang, Jian Qin\",\"doi\":\"10.1007/s10825-024-02168-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article proposes a parameter extraction method suitable for Si substrate based GaN HEMT small signal equivalent circuit models. The proposed method is based on a swarm intelligence optimization algorithm, which improves efficiency and accuracy by introducing a slope penalty factor (SPF) method for the objective function, rather than simply minimizing the error between simulation and measurement. By using PSO, WOA, and PNC-WOA for validation, we have demonstrated the advantages of the SPF method in extracting small signal parameters using swarm intelligence optimization algorithms. It is suitable for complex small-signal models that can describe the GaN HEMT-on-Si substrates, even if working up to 40 GHz.</p></div>\",\"PeriodicalId\":620,\"journal\":{\"name\":\"Journal of Computational Electronics\",\"volume\":\"23 3\",\"pages\":\"516 - 524\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10825-024-02168-3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02168-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
本文提出了一种适用于基于硅衬底的 GaN HEMT 小信号等效电路模型的参数提取方法。该方法基于群智能优化算法,通过为目标函数引入斜率惩罚因子 (SPF) 方法,而不是简单地最小化模拟和测量之间的误差,提高了效率和准确性。通过使用 PSO、WOA 和 PNC-WOA 进行验证,我们证明了 SPF 方法在使用群智能优化算法提取小信号参数方面的优势。它适用于复杂的小信号模型,可以描述硅基 GaN HEMT,即使工作频率高达 40 GHz。
Hybrid small-signal model parameter extraction for GaN HEMT-on-Si Substrates based on the SPF method
This article proposes a parameter extraction method suitable for Si substrate based GaN HEMT small signal equivalent circuit models. The proposed method is based on a swarm intelligence optimization algorithm, which improves efficiency and accuracy by introducing a slope penalty factor (SPF) method for the objective function, rather than simply minimizing the error between simulation and measurement. By using PSO, WOA, and PNC-WOA for validation, we have demonstrated the advantages of the SPF method in extracting small signal parameters using swarm intelligence optimization algorithms. It is suitable for complex small-signal models that can describe the GaN HEMT-on-Si substrates, even if working up to 40 GHz.
期刊介绍:
he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered.
In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.