{"title":"用于生物传感和生物医学应用的界面驱动 DNA/金属有机框架混合物","authors":"Zhaoyu Han, Zhenglian Li, Biwu Liu","doi":"10.1002/ppsc.202400039","DOIUrl":null,"url":null,"abstract":"Metal–organic frameworks (MOFs) have emerged as promising materials for biosensing and biomedical applications due to their exceptional structural properties and tunable functionalities. Integrating functional DNA with MOFs offers numerous advantages, including enhanced colloidal stability, target‐induced signal amplification, improved cellular uptake, and controlled drug release. This focused review aims to highlight key insights into the DNA–MOF interface to facilitate the design and application of these conjugates. A succinct summary of the interactions between DNA and MOFs, covering both noncovalent adsorption and covalent conjugation is provided. Moreover, recent advancements in utilizing DNA–MOF conjugates in biosensors, with a specific emphasis on fluorescent and electrochemical sensing are discussed. Additionally, applications in bioimaging, controlled drug delivery, and nucleic acid delivery are explored. Finally, the limitations of existing designs and provide insightful perspectives for the future development of DNA–MOFs, aiming to expedite their integration and impact in the realm of biomedical applications are addressed.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":"68 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interface‐Driven DNA/Metal–Organic Framework Hybrids for Biosensing and Biomedical Applications\",\"authors\":\"Zhaoyu Han, Zhenglian Li, Biwu Liu\",\"doi\":\"10.1002/ppsc.202400039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal–organic frameworks (MOFs) have emerged as promising materials for biosensing and biomedical applications due to their exceptional structural properties and tunable functionalities. Integrating functional DNA with MOFs offers numerous advantages, including enhanced colloidal stability, target‐induced signal amplification, improved cellular uptake, and controlled drug release. This focused review aims to highlight key insights into the DNA–MOF interface to facilitate the design and application of these conjugates. A succinct summary of the interactions between DNA and MOFs, covering both noncovalent adsorption and covalent conjugation is provided. Moreover, recent advancements in utilizing DNA–MOF conjugates in biosensors, with a specific emphasis on fluorescent and electrochemical sensing are discussed. Additionally, applications in bioimaging, controlled drug delivery, and nucleic acid delivery are explored. Finally, the limitations of existing designs and provide insightful perspectives for the future development of DNA–MOFs, aiming to expedite their integration and impact in the realm of biomedical applications are addressed.\",\"PeriodicalId\":19903,\"journal\":{\"name\":\"Particle & Particle Systems Characterization\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particle & Particle Systems Characterization\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/ppsc.202400039\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle & Particle Systems Characterization","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/ppsc.202400039","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
金属有机框架(MOFs)因其优异的结构特性和可调的功能性,已成为生物传感和生物医学应用领域前景广阔的材料。将功能性 DNA 与 MOFs 相结合具有诸多优势,包括增强胶体稳定性、靶诱导信号放大、改善细胞吸收和控制药物释放。这篇重点综述旨在强调 DNA-MOF 界面的关键见解,以促进这些共轭物的设计和应用。文章简明扼要地总结了 DNA 与 MOFs 之间的相互作用,包括非共价吸附和共价结合。此外,还讨论了在生物传感器中利用 DNA-MOF 共轭物的最新进展,特别强调了荧光和电化学传感。此外,还探讨了 DNA-MOF 在生物成像、可控药物递送和核酸递送中的应用。最后,还讨论了现有设计的局限性,并为 DNA-MOFs 的未来发展提供了富有洞察力的视角,旨在加快其在生物医学应用领域的整合和影响。
Interface‐Driven DNA/Metal–Organic Framework Hybrids for Biosensing and Biomedical Applications
Metal–organic frameworks (MOFs) have emerged as promising materials for biosensing and biomedical applications due to their exceptional structural properties and tunable functionalities. Integrating functional DNA with MOFs offers numerous advantages, including enhanced colloidal stability, target‐induced signal amplification, improved cellular uptake, and controlled drug release. This focused review aims to highlight key insights into the DNA–MOF interface to facilitate the design and application of these conjugates. A succinct summary of the interactions between DNA and MOFs, covering both noncovalent adsorption and covalent conjugation is provided. Moreover, recent advancements in utilizing DNA–MOF conjugates in biosensors, with a specific emphasis on fluorescent and electrochemical sensing are discussed. Additionally, applications in bioimaging, controlled drug delivery, and nucleic acid delivery are explored. Finally, the limitations of existing designs and provide insightful perspectives for the future development of DNA–MOFs, aiming to expedite their integration and impact in the realm of biomedical applications are addressed.
期刊介绍:
Particle & Particle Systems Characterization is an international, peer-reviewed, interdisciplinary journal focusing on all aspects of particle research. The journal joined the Advanced Materials family of journals in 2013. Particle has an impact factor of 4.194 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)).
Topics covered include the synthesis, characterization, and application of particles in a variety of systems and devices.
Particle covers nanotubes, fullerenes, micelles and alloy clusters, organic and inorganic materials, polymers, quantum dots, 2D materials, proteins, and other molecular biological systems.
Particle Systems include those in biomedicine, catalysis, energy-storage materials, environmental science, micro/nano-electromechanical systems, micro/nano-fluidics, molecular electronics, photonics, sensing, and others.
Characterization methods include microscopy, spectroscopy, electrochemical, diffraction, magnetic, and scattering techniques.