Yichao Jin, Zhaoyue Lü, Xiao Wang, Zongkai Tang, Haichuan Mu
{"title":"关于 TCTA-PO-T2T 复合物中电子-空穴对长程耦合的理论见解","authors":"Yichao Jin, Zhaoyue Lü, Xiao Wang, Zongkai Tang, Haichuan Mu","doi":"10.1016/j.orgel.2024.107073","DOIUrl":null,"url":null,"abstract":"<div><p>This work reports theoretical investigations concerning long-range coupling of electron-hole pairs in spatially separated exciplex (SSE) systems via Density Functional Theory and Time-Dependent Density Functional Theory. Based on TCTA−PO-T2T parent exciplex, where 4,4′,4″-Tris(carbazol-9-yl)triphenylamine (TCTA) serves as donor (D) and 2,4,6-Tris[3-(diphenylphosphinyl)phenyl]-1,3,5-triazine (PO-T2T) as acceptor (A), SSEs are constructed by intentionally tuning the D−A distance. The calculation results demonstrate that all SSEs, even if the D−A distance is over 14 Å, exhibit the clear and strong charge transfer character in terms of <em>D</em><sub>CT</sub>, <em>q</em><sub>CT</sub>, and <em>t</em> indexes. As the D−A distance increases, the energy gap of SSEs is increased, resulting in the blueshift of emission spectra. Calculation and experiment results show a good consistency, indicating that our model could well describe SSEs. Meanwhile, the reduced energy gap between CT and <sup>3</sup>LE and more degenerate states could boost reverse intersystem crossing via vibronic coupling and hyperfine coupling, eventually improving the electroluminescent performance of SSEs. Our study suggests that manipulation of relative energy alignment via controlling D−A distance not only promotes the properties of exciplexes, but also offers guidance for designing thermally activated delayed fluorescence emitters through-space charge transfer.</p></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"130 ","pages":"Article 107073"},"PeriodicalIF":2.7000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical insights into long-range coupling of electron-hole pairs in TCTA–PO-T2T exciplex\",\"authors\":\"Yichao Jin, Zhaoyue Lü, Xiao Wang, Zongkai Tang, Haichuan Mu\",\"doi\":\"10.1016/j.orgel.2024.107073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work reports theoretical investigations concerning long-range coupling of electron-hole pairs in spatially separated exciplex (SSE) systems via Density Functional Theory and Time-Dependent Density Functional Theory. Based on TCTA−PO-T2T parent exciplex, where 4,4′,4″-Tris(carbazol-9-yl)triphenylamine (TCTA) serves as donor (D) and 2,4,6-Tris[3-(diphenylphosphinyl)phenyl]-1,3,5-triazine (PO-T2T) as acceptor (A), SSEs are constructed by intentionally tuning the D−A distance. The calculation results demonstrate that all SSEs, even if the D−A distance is over 14 Å, exhibit the clear and strong charge transfer character in terms of <em>D</em><sub>CT</sub>, <em>q</em><sub>CT</sub>, and <em>t</em> indexes. As the D−A distance increases, the energy gap of SSEs is increased, resulting in the blueshift of emission spectra. Calculation and experiment results show a good consistency, indicating that our model could well describe SSEs. Meanwhile, the reduced energy gap between CT and <sup>3</sup>LE and more degenerate states could boost reverse intersystem crossing via vibronic coupling and hyperfine coupling, eventually improving the electroluminescent performance of SSEs. Our study suggests that manipulation of relative energy alignment via controlling D−A distance not only promotes the properties of exciplexes, but also offers guidance for designing thermally activated delayed fluorescence emitters through-space charge transfer.</p></div>\",\"PeriodicalId\":399,\"journal\":{\"name\":\"Organic Electronics\",\"volume\":\"130 \",\"pages\":\"Article 107073\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566119924000843\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119924000843","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Theoretical insights into long-range coupling of electron-hole pairs in TCTA–PO-T2T exciplex
This work reports theoretical investigations concerning long-range coupling of electron-hole pairs in spatially separated exciplex (SSE) systems via Density Functional Theory and Time-Dependent Density Functional Theory. Based on TCTA−PO-T2T parent exciplex, where 4,4′,4″-Tris(carbazol-9-yl)triphenylamine (TCTA) serves as donor (D) and 2,4,6-Tris[3-(diphenylphosphinyl)phenyl]-1,3,5-triazine (PO-T2T) as acceptor (A), SSEs are constructed by intentionally tuning the D−A distance. The calculation results demonstrate that all SSEs, even if the D−A distance is over 14 Å, exhibit the clear and strong charge transfer character in terms of DCT, qCT, and t indexes. As the D−A distance increases, the energy gap of SSEs is increased, resulting in the blueshift of emission spectra. Calculation and experiment results show a good consistency, indicating that our model could well describe SSEs. Meanwhile, the reduced energy gap between CT and 3LE and more degenerate states could boost reverse intersystem crossing via vibronic coupling and hyperfine coupling, eventually improving the electroluminescent performance of SSEs. Our study suggests that manipulation of relative energy alignment via controlling D−A distance not only promotes the properties of exciplexes, but also offers guidance for designing thermally activated delayed fluorescence emitters through-space charge transfer.
期刊介绍:
Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc.
Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.