铸钢接头焊接过程中热影响区晶粒生长的蒙特卡罗模拟及焊接工艺优化

IF 2.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Haihan Jiao, Hui Jin
{"title":"铸钢接头焊接过程中热影响区晶粒生长的蒙特卡罗模拟及焊接工艺优化","authors":"Haihan Jiao,&nbsp;Hui Jin","doi":"10.1007/s40194-024-01782-w","DOIUrl":null,"url":null,"abstract":"<div><p>The final microstructure and mechanical properties of a welded joint are determined by the evolution and crystallization process of grain structure during welding. This study aims to improve the mechanical properties of the weak weld root zone in a G20Mn5 cast steel—Q345 low-alloy steel circular butt weld. The microstructure changes of the weld during the welding process were investigated using metallographic testing combined with Monte Carlo simulation, and suggestions for optimizing the welding process were provided. Firstly, the microstructural assessment of welded cast steel joints was conducted using metallographic and hardness tests. It was clarified that the heat-affected zone at the weld root on the Q345 steel side was the weak zone. Additionally, the relationship between grain size and mechanical properties of the joints was established. A Monte Carlo model was then used to simulate the dynamic recrystallization process and determine the final distribution of grain structure in the heat-affected zone. Finally, the calibrated model was utilized to analyze the impact of different welding processes on grain structure and mechanical properties. The findings indicate that employing a three-pass welding process, incorporating a V-shaped groove on the cast steel side, and dispersing the welding start and stop positions can effectively inhibit grain growth in the heat-affected zone, which provides valuable insights for optimizing the welding process of cast steel welded joints.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"68 10","pages":"2553 - 2566"},"PeriodicalIF":2.4000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monte Carlo simulation of grain growth in heat-affected zone during welding process of cast steel joint and optimization of welding process\",\"authors\":\"Haihan Jiao,&nbsp;Hui Jin\",\"doi\":\"10.1007/s40194-024-01782-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The final microstructure and mechanical properties of a welded joint are determined by the evolution and crystallization process of grain structure during welding. This study aims to improve the mechanical properties of the weak weld root zone in a G20Mn5 cast steel—Q345 low-alloy steel circular butt weld. The microstructure changes of the weld during the welding process were investigated using metallographic testing combined with Monte Carlo simulation, and suggestions for optimizing the welding process were provided. Firstly, the microstructural assessment of welded cast steel joints was conducted using metallographic and hardness tests. It was clarified that the heat-affected zone at the weld root on the Q345 steel side was the weak zone. Additionally, the relationship between grain size and mechanical properties of the joints was established. A Monte Carlo model was then used to simulate the dynamic recrystallization process and determine the final distribution of grain structure in the heat-affected zone. Finally, the calibrated model was utilized to analyze the impact of different welding processes on grain structure and mechanical properties. The findings indicate that employing a three-pass welding process, incorporating a V-shaped groove on the cast steel side, and dispersing the welding start and stop positions can effectively inhibit grain growth in the heat-affected zone, which provides valuable insights for optimizing the welding process of cast steel welded joints.</p></div>\",\"PeriodicalId\":809,\"journal\":{\"name\":\"Welding in the World\",\"volume\":\"68 10\",\"pages\":\"2553 - 2566\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Welding in the World\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40194-024-01782-w\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding in the World","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40194-024-01782-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

焊接接头的最终微观结构和机械性能取决于焊接过程中晶粒结构的演变和结晶过程。本研究旨在改善 G20Mn5 铸钢-Q345 低合金钢圆形对接焊缝中弱焊缝根部区域的机械性能。通过金相测试结合蒙特卡罗模拟研究了焊接过程中焊缝的微观结构变化,并提出了优化焊接工艺的建议。首先,使用金相和硬度测试对焊接铸钢接头进行了微观结构评估。结果表明,Q345 钢一侧焊缝根部的热影响区是薄弱区。此外,还确定了晶粒大小与接头机械性能之间的关系。然后使用蒙特卡罗模型模拟动态再结晶过程,并确定热影响区晶粒结构的最终分布。最后,利用校准模型分析不同焊接工艺对晶粒结构和机械性能的影响。研究结果表明,采用三道焊接工艺、在铸钢侧加入 V 形槽以及分散焊接开始和停止位置可有效抑制热影响区的晶粒长大,这为优化铸钢焊接接头的焊接工艺提供了有价值的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Monte Carlo simulation of grain growth in heat-affected zone during welding process of cast steel joint and optimization of welding process

Monte Carlo simulation of grain growth in heat-affected zone during welding process of cast steel joint and optimization of welding process

The final microstructure and mechanical properties of a welded joint are determined by the evolution and crystallization process of grain structure during welding. This study aims to improve the mechanical properties of the weak weld root zone in a G20Mn5 cast steel—Q345 low-alloy steel circular butt weld. The microstructure changes of the weld during the welding process were investigated using metallographic testing combined with Monte Carlo simulation, and suggestions for optimizing the welding process were provided. Firstly, the microstructural assessment of welded cast steel joints was conducted using metallographic and hardness tests. It was clarified that the heat-affected zone at the weld root on the Q345 steel side was the weak zone. Additionally, the relationship between grain size and mechanical properties of the joints was established. A Monte Carlo model was then used to simulate the dynamic recrystallization process and determine the final distribution of grain structure in the heat-affected zone. Finally, the calibrated model was utilized to analyze the impact of different welding processes on grain structure and mechanical properties. The findings indicate that employing a three-pass welding process, incorporating a V-shaped groove on the cast steel side, and dispersing the welding start and stop positions can effectively inhibit grain growth in the heat-affected zone, which provides valuable insights for optimizing the welding process of cast steel welded joints.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Welding in the World
Welding in the World METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
4.20
自引率
14.30%
发文量
181
审稿时长
6-12 weeks
期刊介绍: The journal Welding in the World publishes authoritative papers on every aspect of materials joining, including welding, brazing, soldering, cutting, thermal spraying and allied joining and fabrication techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信