{"title":"关于广义扎尔克曼猜想","authors":"Vasudevarao Allu, Abhishek Pandey","doi":"10.1007/s10231-024-01461-z","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mathcal {S}\\)</span> denote the class of analytic and univalent (i.e., one-to-one) functions <span>\\( f(z)= z+\\sum _{n=2}^{\\infty }a_n z^n\\)</span> in the unit disk <span>\\(\\mathbb {D}=\\{z\\in \\mathbb {C}:|z|<1\\}\\)</span>. For <span>\\(f\\in \\mathcal {S}\\)</span>, In 1999, Ma proposed the generalized Zalcman conjecture that </p><div><div><span>$$\\begin{aligned}|a_{n}a_{m}-a_{n+m-1}|\\le (n-1)(m-1),\\,\\,\\, \\text{ for } n\\ge 2,\\, m\\ge 2,\\end{aligned}$$</span></div></div><p>with equality only for the Koebe function <span>\\(k(z) = z/(1 - z)^2\\)</span> and its rotations. In the same paper, Ma (J Math Anal Appl 234:328–339, 1999) asked for what positive real values of <span>\\(\\lambda \\)</span> does the following inequality hold? </p><div><div><span>$$\\begin{aligned} |\\lambda a_na_m-a_{n+m-1}|\\le \\lambda nm -n-m+1 \\,\\,\\,\\,\\, (n\\ge 2, \\,m\\ge 3). \\end{aligned}$$</span></div><div>\n (0.1)\n </div></div><p>Clearly equality holds for the Koebe function <span>\\(k(z) = z/(1 - z)^2\\)</span> and its rotations. In this paper, we prove the inequality (0.1) for <span>\\(\\lambda =3, n=2, m=3\\)</span>. Further, we provide a geometric condition on extremal function maximizing (0.1) for <span>\\(\\lambda =2,n=2, m=3\\)</span>.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the generalized Zalcman conjecture\",\"authors\":\"Vasudevarao Allu, Abhishek Pandey\",\"doi\":\"10.1007/s10231-024-01461-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(\\\\mathcal {S}\\\\)</span> denote the class of analytic and univalent (i.e., one-to-one) functions <span>\\\\( f(z)= z+\\\\sum _{n=2}^{\\\\infty }a_n z^n\\\\)</span> in the unit disk <span>\\\\(\\\\mathbb {D}=\\\\{z\\\\in \\\\mathbb {C}:|z|<1\\\\}\\\\)</span>. For <span>\\\\(f\\\\in \\\\mathcal {S}\\\\)</span>, In 1999, Ma proposed the generalized Zalcman conjecture that </p><div><div><span>$$\\\\begin{aligned}|a_{n}a_{m}-a_{n+m-1}|\\\\le (n-1)(m-1),\\\\,\\\\,\\\\, \\\\text{ for } n\\\\ge 2,\\\\, m\\\\ge 2,\\\\end{aligned}$$</span></div></div><p>with equality only for the Koebe function <span>\\\\(k(z) = z/(1 - z)^2\\\\)</span> and its rotations. In the same paper, Ma (J Math Anal Appl 234:328–339, 1999) asked for what positive real values of <span>\\\\(\\\\lambda \\\\)</span> does the following inequality hold? </p><div><div><span>$$\\\\begin{aligned} |\\\\lambda a_na_m-a_{n+m-1}|\\\\le \\\\lambda nm -n-m+1 \\\\,\\\\,\\\\,\\\\,\\\\, (n\\\\ge 2, \\\\,m\\\\ge 3). \\\\end{aligned}$$</span></div><div>\\n (0.1)\\n </div></div><p>Clearly equality holds for the Koebe function <span>\\\\(k(z) = z/(1 - z)^2\\\\)</span> and its rotations. In this paper, we prove the inequality (0.1) for <span>\\\\(\\\\lambda =3, n=2, m=3\\\\)</span>. Further, we provide a geometric condition on extremal function maximizing (0.1) for <span>\\\\(\\\\lambda =2,n=2, m=3\\\\)</span>.</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-024-01461-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01461-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 \(\mathcal {S}\) 表示单位盘 \(\mathbb {D}=\{z\in \mathbb {C}:|z|<1\}\) 中的解析和一等(即一一对应)函数类 \( f(z)= z+sum _{n=2}^{\infty }a_n z^n\).对于(f\ in \mathcal {S}),1999年,马云提出了广义扎尔克曼猜想:$$\begin{aligned}|a_{n}a_{m}-a_{n+m-1}|\le (n-1)(m-1)、\,\,\, text{ for } n\ge 2,\, m\ge 2,\end{aligned}$$ 仅对科贝函数 \(k(z) = z/(1 - z)^2\) 及其旋转来说是相等的。在同一篇文章中,Ma(J Math Anal Appl 234:328-339,1999)问,对于 \(\lambda \)的哪些正实值,下面的不等式成立?$$\begin{aligned}|\lambda a_na_m-a_{n+m-1}|le \lambda nm -n-m+1 \,\,\,\, (n\ge 2, \,m\ge 3).\end{aligned}$$(0.1)Clearly equality holds for the Koebe function \(k(z) = z/(1 - z)^2\) and its rotations.在本文中,我们证明了 \(\lambda =3, n=2, m=3\) 的不等式 (0.1)。此外,我们还为(\lambda =2,n=2,m=3)的极值函数最大化(0.1)提供了一个几何条件。
Let \(\mathcal {S}\) denote the class of analytic and univalent (i.e., one-to-one) functions \( f(z)= z+\sum _{n=2}^{\infty }a_n z^n\) in the unit disk \(\mathbb {D}=\{z\in \mathbb {C}:|z|<1\}\). For \(f\in \mathcal {S}\), In 1999, Ma proposed the generalized Zalcman conjecture that
$$\begin{aligned}|a_{n}a_{m}-a_{n+m-1}|\le (n-1)(m-1),\,\,\, \text{ for } n\ge 2,\, m\ge 2,\end{aligned}$$
with equality only for the Koebe function \(k(z) = z/(1 - z)^2\) and its rotations. In the same paper, Ma (J Math Anal Appl 234:328–339, 1999) asked for what positive real values of \(\lambda \) does the following inequality hold?
Clearly equality holds for the Koebe function \(k(z) = z/(1 - z)^2\) and its rotations. In this paper, we prove the inequality (0.1) for \(\lambda =3, n=2, m=3\). Further, we provide a geometric condition on extremal function maximizing (0.1) for \(\lambda =2,n=2, m=3\).
期刊介绍:
This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it).
A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.