{"title":"C*-gebras 的新张量积和作为刚性对称 C*-gebras 的 I 型 C*-gebras 的表征","authors":"Hun Hee Lee, Ebrahim Samei, Matthew Wiersma","doi":"10.1090/tran/9139","DOIUrl":null,"url":null,"abstract":"<p>Inspired by recent developments in the theory of Banach and operator algebras of locally compact groups, we construct several new classes of bifunctors <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper A comma upper B right-parenthesis right-arrow from bar upper A circled-times Subscript alpha Baseline upper B\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo>,</mml:mo> <mml:mi>B</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">↦<!-- ↦ --></mml:mo> <mml:mi>A</mml:mi> <mml:msub> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mrow> <mml:mi>α<!-- α --></mml:mi> </mml:mrow> </mml:msub> <mml:mi>B</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(A,B)\\mapsto A\\otimes _{\\alpha } B</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A circled-times Subscript alpha Baseline upper B\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:msub> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mi>α<!-- α --></mml:mi> </mml:msub> <mml:mi>B</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">A\\otimes _\\alpha B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a cross norm completion of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A circled-dot upper B\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>⊙<!-- ⊙ --></mml:mo> <mml:mi>B</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">A\\odot B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for each pair of C*-algebras <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=\"application/x-tex\">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B\"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding=\"application/x-tex\">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. For the first class of bifunctors considered <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper A comma upper B right-parenthesis right-arrow from bar upper A circled-times Subscript p Baseline upper B\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo>,</mml:mo> <mml:mi>B</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">↦<!-- ↦ --></mml:mo> <mml:mi>A</mml:mi> <mml:mrow> <mml:msub> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mi>p</mml:mi> </mml:msub> </mml:mrow> <mml:mi>B</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(A,B)\\mapsto A{\\otimes _p} B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 less-than-or-equal-to p less-than-or-equal-to normal infinity\"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>p</mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">1\\leq p\\leq \\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>), <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A circled-times Subscript p Baseline upper B\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mrow> <mml:msub> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mi>p</mml:mi> </mml:msub> </mml:mrow> <mml:mi>B</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">A{\\otimes _p} B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a Banach algebra cross-norm completion of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A circled-dot upper B\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>⊙<!-- ⊙ --></mml:mo> <mml:mi>B</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">A\\odot B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> constructed in a fashion similar to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-pseudofunctions <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"PF Subscript p Superscript asterisk Baseline left-parenthesis upper G right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mtext>PF</mml:mtext> <mml:mi>p</mml:mi> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msubsup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\text {PF}^*_p(G)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of a locally compact group. Taking a cue from the recently introduced symmetrized <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-pseudofunctions due to Liao and Yu and later by the second and the third named authors, we also consider <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"circled-times Subscript p comma q Baseline\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{\\otimes _{p,q}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for Hölder conjugate <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p comma q element-of left-bracket 1 comma normal infinity right-bracket\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>q</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p,q\\in [1,\\infty ]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> – a Banach <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"asterisk\"> <mml:semantics> <mml:mo>∗<!-- ∗ --></mml:mo> <mml:annotation encoding=\"application/x-tex\">*</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebra analogue of the tensor product <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"circled-times Subscript p comma q Baseline\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{\\otimes _{p,q}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. By taking enveloping C*-algebras of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A circled-times Subscript p comma q Baseline upper B\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mrow> <mml:msub> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:mi>B</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">A{\\otimes _{p,q}} B</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we arrive at a third bifunctor <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper A comma upper B right-parenthesis right-arrow from bar upper A circled-times Subscript normal upper C Sub Subscript p comma q Sub Superscript asterisk Baseline upper B\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo>,</mml:mo> <mml:mi>B</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">↦<!-- ↦ --></mml:mo> <mml:mi>A</mml:mi> <mml:mrow> <mml:msub> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mrow> <mml:msubsup> <mml:mrow> <mml:mi mathvariant=\"normal\">C</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msubsup> </mml:mrow> </mml:msub> </mml:mrow> <mml:mi>B</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(A,B)\\mapsto A{\\otimes _{\\mathrm C^*_{p,q}}} B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where the resulting algebra <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A circled-times Subscript normal upper C Sub Subscript p comma q Sub Superscript asterisk Baseline upper B\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mrow> <mml:msub> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mrow> <mml:msubsup> <mml:mrow> <mml:mi mathvariant=\"normal\">C</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msubsup> </mml:mrow> </mml:msub> </mml:mrow> <mml:mi>B</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">A{\\otimes _{\\mathrm C^*_{p,q}}} B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a C*-algebra.</p> <p>For <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G 1\"> <mml:semantics> <mml:msub> <mml:mi>G</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:annotation encoding=\"application/x-tex\">G_1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G 2\"> <mml:semantics> <mml:msub> <mml:mi>G</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:annotation encoding=\"application/x-tex\">G_2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> belonging to a large class of discrete groups, we show that the tensor products <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper C Subscript normal r Superscript asterisk Baseline left-parenthesis upper G 1 right-parenthesis circled-times Subscript normal upper C Sub Subscript p comma q Sub Superscript asterisk Baseline normal upper C Subscript normal r Superscript asterisk Baseline left-parenthesis upper G 2 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mrow> <mml:mi mathvariant=\"normal\">C</mml:mi> </mml:mrow> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">r</mml:mi> </mml:mrow> </mml:mrow> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msubsup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow> <mml:msub> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mrow> <mml:msubsup> <mml:mrow> <mml:mi mathvariant=\"normal\">C</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msubsup> </mml:mrow> </mml:msub> </mml:mrow> <mml:msubsup> <mml:mrow> <mml:mi mathvariant=\"normal\">C</mml:mi> </mml:mrow> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">r</mml:mi> </mml:mrow> </mml:mrow> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msubsup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathrm C^*_{\\mathrm r}(G_1){\\otimes _{\\mathrm C^*_{p,q}}}\\mathrm C^*_{\\mathrm r}(G_2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> coincide with a Brown-Guentner type C*-completion of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l Superscript 1 Baseline left-parenthesis upper G 1 times upper G 2 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi>ℓ<!-- ℓ --></mml:mi> </mml:mrow> <mml:mn>1</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>×<!-- × --></mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathrm \\ell ^1(G_1\\times G_2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and conclude that if <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 less-than-or-equal-to p prime greater-than p less-than-or-equal-to normal infinity\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:msup> <mml:mi>p</mml:mi> <mml:mo>′</mml:mo> </mml:msup> <mml:mo>></mml:mo> <mml:mi>p</mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">2\\leq p’>p\\leq \\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then the canonical quotient map <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper C Subscript normal r Superscript asterisk Baseline left-parenthesis upper G right-parenthesis circled-times Subscript normal upper C Sub Subscript p comma q Sub Superscript asterisk Baseline normal upper C Subscript normal r Superscript asterisk Baseline left-parenthesis upper G right-parenthesis right-arrow normal upper C Subscript normal r Superscript asterisk Baseline left-parenthesis upper G right-parenthesis circled-times Subscript normal upper C Sub Subscript p comma q Sub Superscript asterisk Baseline normal upper C Subscript normal r Superscript asterisk Baseline left-parenthesis upper G right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mrow> <mml:mi mathvariant=\"normal\">C</mml:mi> </mml:mrow> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">r</mml:mi> </mml:mrow> </mml:mrow> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msubsup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow> <mml:msub> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mrow> <mml:msubsup> <mml:mrow> <mml:mi mathvariant=\"normal\">C</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msubsup> </mml:mrow> </mml:msub> </mml:mrow> <mml:msubsup> <mml:mrow> <mml:mi mathvariant=\"normal\">C</mml:mi> </mml:mrow> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">r</mml:mi> </mml:mrow> </mml:mrow> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msubsup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">→<!-- → --></mml:mo> <mml:msubsup> <mml:mrow> <mml:mi mathvariant=\"normal\">C</mml:mi> </mml:mrow> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">r</mml:mi> </mml:mrow> </mml:mrow> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msubsup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow> <mml:msub> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mrow> <mml:msubsup> <mml:mrow> <mml:mi mathvariant=\"normal\">C</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msubsup> </mml:mrow> </mml:msub> </mml:mrow> <mml:msubsup> <mml:mrow> <mml:mi mathvariant=\"normal\">C</mml:mi> </mml:mrow> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">r</mml:mi> </mml:mrow> </mml:mrow> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msubsup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathrm C^*_{\\mathrm r}(G){\\otimes _{\\mathrm C^*_{p,q}}}\\mathrm C^*_{\\mathrm r}(G)\\to \\mathrm C^*_{\\mathrm r}(G){\\otimes _{\\mathrm C^*_{p,q}}}\\mathrm C^*_{\\mathrm r}(G)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is not injective for a large class of non-amenable discrete groups possessing both the rapid decay property and Haagerup’s approximation property.</p> <p>A Banach <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"asterisk\"> <mml:semantics> <mml:mo>∗<!-- ∗ --></mml:mo> <mml:annotation encoding=\"application/x-tex\">*</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebra <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=\"application/x-tex\">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is <italic>symmetric</italic> if the spectrum <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper S normal p Subscript upper A Baseline left-parenthesis a Superscript asterisk Baseline a right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"normal\">S</mml:mi> <mml:mi mathvariant=\"normal\">p</mml:mi> </mml:mrow> <mml:mi>A</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>a</mml:mi> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msup> <mml:mi>a</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathrm {Sp}_A(a^*a)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is contained in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket 0 comma normal infinity right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">[0,\\infty )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for every <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a element-of upper A\"> <mml:semantics> <mml:mrow> <mml:mi>a</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi>A</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">a\\in A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <italic>rigidly symmetric</italic> if <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A circled-times Subscript gamma Baseline upper B\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:msub> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mrow> <mml:mi>γ<!-- γ --></mml:mi> </mml:mrow> </mml:msub> <mml:mi>B</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">A\\otimes _{\\gamma } B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is symmetric for every C*-algebra <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B\"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding=\"application/x-tex\">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. A theorem of Kügler asserts that every type I C*-algebra is rigidly symmetric. Leveraging our new constructions, we establish the converse of Kügler’s theorem by showing for C*-algebras <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=\"application/x-tex\">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B\"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding=\"application/x-tex\">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A circled-times Subscript gamma Baseline upper B\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:msub> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mrow> <mml:mi>γ<!-- γ --></mml:mi> </mml:mrow> </mml:msub> <mml:mi>B</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">A\\otimes _{\\gamma }B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is symmetric if and only if <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=\"application/x-tex\">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> or <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B\"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding=\"application/x-tex\">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is type I. In particular, a C*-algebra is rigidly symmetric if and only if it is type I. This strongly settles a question of Leptin and Poguntke from 1979 [J. Functional Analysis 33 (1979), pp. 119—134] and corrects an error in the literature.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New tensor products of C*-algebras and characterization of type I C*-algebras as rigidly symmetric C*-algebras\",\"authors\":\"Hun Hee Lee, Ebrahim Samei, Matthew Wiersma\",\"doi\":\"10.1090/tran/9139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Inspired by recent developments in the theory of Banach and operator algebras of locally compact groups, we construct several new classes of bifunctors <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis upper A comma upper B right-parenthesis right-arrow from bar upper A circled-times Subscript alpha Baseline upper B\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo>,</mml:mo> <mml:mi>B</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo stretchy=\\\"false\\\">↦<!-- ↦ --></mml:mo> <mml:mi>A</mml:mi> <mml:msub> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mrow> <mml:mi>α<!-- α --></mml:mi> </mml:mrow> </mml:msub> <mml:mi>B</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(A,B)\\\\mapsto A\\\\otimes _{\\\\alpha } B</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A circled-times Subscript alpha Baseline upper B\\\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:msub> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mi>α<!-- α --></mml:mi> </mml:msub> <mml:mi>B</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">A\\\\otimes _\\\\alpha B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a cross norm completion of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A circled-dot upper B\\\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>⊙<!-- ⊙ --></mml:mo> <mml:mi>B</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">A\\\\odot B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for each pair of C*-algebras <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A\\\"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper B\\\"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. For the first class of bifunctors considered <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis upper A comma upper B right-parenthesis right-arrow from bar upper A circled-times Subscript p Baseline upper B\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo>,</mml:mo> <mml:mi>B</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo stretchy=\\\"false\\\">↦<!-- ↦ --></mml:mo> <mml:mi>A</mml:mi> <mml:mrow> <mml:msub> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mi>p</mml:mi> </mml:msub> </mml:mrow> <mml:mi>B</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(A,B)\\\\mapsto A{\\\\otimes _p} B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (<inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"1 less-than-or-equal-to p less-than-or-equal-to normal infinity\\\"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>p</mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">1\\\\leq p\\\\leq \\\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>), <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A circled-times Subscript p Baseline upper B\\\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mrow> <mml:msub> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mi>p</mml:mi> </mml:msub> </mml:mrow> <mml:mi>B</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">A{\\\\otimes _p} B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a Banach algebra cross-norm completion of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A circled-dot upper B\\\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>⊙<!-- ⊙ --></mml:mo> <mml:mi>B</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">A\\\\odot B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> constructed in a fashion similar to <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-pseudofunctions <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"PF Subscript p Superscript asterisk Baseline left-parenthesis upper G right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mtext>PF</mml:mtext> <mml:mi>p</mml:mi> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msubsup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\text {PF}^*_p(G)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of a locally compact group. Taking a cue from the recently introduced symmetrized <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-pseudofunctions due to Liao and Yu and later by the second and the third named authors, we also consider <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"circled-times Subscript p comma q Baseline\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">{\\\\otimes _{p,q}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for Hölder conjugate <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p comma q element-of left-bracket 1 comma normal infinity right-bracket\\\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>q</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mo stretchy=\\\"false\\\">[</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> <mml:mo stretchy=\\\"false\\\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">p,q\\\\in [1,\\\\infty ]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> – a Banach <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"asterisk\\\"> <mml:semantics> <mml:mo>∗<!-- ∗ --></mml:mo> <mml:annotation encoding=\\\"application/x-tex\\\">*</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebra analogue of the tensor product <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"circled-times Subscript p comma q Baseline\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">{\\\\otimes _{p,q}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. By taking enveloping C*-algebras of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A circled-times Subscript p comma q Baseline upper B\\\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mrow> <mml:msub> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:mi>B</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">A{\\\\otimes _{p,q}} B</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we arrive at a third bifunctor <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis upper A comma upper B right-parenthesis right-arrow from bar upper A circled-times Subscript normal upper C Sub Subscript p comma q Sub Superscript asterisk Baseline upper B\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo>,</mml:mo> <mml:mi>B</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo stretchy=\\\"false\\\">↦<!-- ↦ --></mml:mo> <mml:mi>A</mml:mi> <mml:mrow> <mml:msub> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mrow> <mml:msubsup> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">C</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msubsup> </mml:mrow> </mml:msub> </mml:mrow> <mml:mi>B</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(A,B)\\\\mapsto A{\\\\otimes _{\\\\mathrm C^*_{p,q}}} B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where the resulting algebra <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A circled-times Subscript normal upper C Sub Subscript p comma q Sub Superscript asterisk Baseline upper B\\\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mrow> <mml:msub> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mrow> <mml:msubsup> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">C</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msubsup> </mml:mrow> </mml:msub> </mml:mrow> <mml:mi>B</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">A{\\\\otimes _{\\\\mathrm C^*_{p,q}}} B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a C*-algebra.</p> <p>For <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G 1\\\"> <mml:semantics> <mml:msub> <mml:mi>G</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">G_1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G 2\\\"> <mml:semantics> <mml:msub> <mml:mi>G</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">G_2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> belonging to a large class of discrete groups, we show that the tensor products <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper C Subscript normal r Superscript asterisk Baseline left-parenthesis upper G 1 right-parenthesis circled-times Subscript normal upper C Sub Subscript p comma q Sub Superscript asterisk Baseline normal upper C Subscript normal r Superscript asterisk Baseline left-parenthesis upper G 2 right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">C</mml:mi> </mml:mrow> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">r</mml:mi> </mml:mrow> </mml:mrow> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msubsup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mrow> <mml:msub> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mrow> <mml:msubsup> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">C</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msubsup> </mml:mrow> </mml:msub> </mml:mrow> <mml:msubsup> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">C</mml:mi> </mml:mrow> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">r</mml:mi> </mml:mrow> </mml:mrow> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msubsup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm C^*_{\\\\mathrm r}(G_1){\\\\otimes _{\\\\mathrm C^*_{p,q}}}\\\\mathrm C^*_{\\\\mathrm r}(G_2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> coincide with a Brown-Guentner type C*-completion of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script l Superscript 1 Baseline left-parenthesis upper G 1 times upper G 2 right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi>ℓ<!-- ℓ --></mml:mi> </mml:mrow> <mml:mn>1</mml:mn> </mml:msup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>×<!-- × --></mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm \\\\ell ^1(G_1\\\\times G_2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and conclude that if <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2 less-than-or-equal-to p prime greater-than p less-than-or-equal-to normal infinity\\\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:msup> <mml:mi>p</mml:mi> <mml:mo>′</mml:mo> </mml:msup> <mml:mo>></mml:mo> <mml:mi>p</mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">2\\\\leq p’>p\\\\leq \\\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then the canonical quotient map <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper C Subscript normal r Superscript asterisk Baseline left-parenthesis upper G right-parenthesis circled-times Subscript normal upper C Sub Subscript p comma q Sub Superscript asterisk Baseline normal upper C Subscript normal r Superscript asterisk Baseline left-parenthesis upper G right-parenthesis right-arrow normal upper C Subscript normal r Superscript asterisk Baseline left-parenthesis upper G right-parenthesis circled-times Subscript normal upper C Sub Subscript p comma q Sub Superscript asterisk Baseline normal upper C Subscript normal r Superscript asterisk Baseline left-parenthesis upper G right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">C</mml:mi> </mml:mrow> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">r</mml:mi> </mml:mrow> </mml:mrow> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msubsup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mrow> <mml:msub> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mrow> <mml:msubsup> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">C</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msubsup> </mml:mrow> </mml:msub> </mml:mrow> <mml:msubsup> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">C</mml:mi> </mml:mrow> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">r</mml:mi> </mml:mrow> </mml:mrow> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msubsup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo> <mml:msubsup> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">C</mml:mi> </mml:mrow> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">r</mml:mi> </mml:mrow> </mml:mrow> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msubsup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mrow> <mml:msub> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mrow> <mml:msubsup> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">C</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msubsup> </mml:mrow> </mml:msub> </mml:mrow> <mml:msubsup> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">C</mml:mi> </mml:mrow> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">r</mml:mi> </mml:mrow> </mml:mrow> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msubsup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm C^*_{\\\\mathrm r}(G){\\\\otimes _{\\\\mathrm C^*_{p,q}}}\\\\mathrm C^*_{\\\\mathrm r}(G)\\\\to \\\\mathrm C^*_{\\\\mathrm r}(G){\\\\otimes _{\\\\mathrm C^*_{p,q}}}\\\\mathrm C^*_{\\\\mathrm r}(G)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is not injective for a large class of non-amenable discrete groups possessing both the rapid decay property and Haagerup’s approximation property.</p> <p>A Banach <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"asterisk\\\"> <mml:semantics> <mml:mo>∗<!-- ∗ --></mml:mo> <mml:annotation encoding=\\\"application/x-tex\\\">*</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebra <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A\\\"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is <italic>symmetric</italic> if the spectrum <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper S normal p Subscript upper A Baseline left-parenthesis a Superscript asterisk Baseline a right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">S</mml:mi> <mml:mi mathvariant=\\\"normal\\\">p</mml:mi> </mml:mrow> <mml:mi>A</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msup> <mml:mi>a</mml:mi> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msup> <mml:mi>a</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {Sp}_A(a^*a)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is contained in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-bracket 0 comma normal infinity right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">[0,\\\\infty )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for every <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"a element-of upper A\\\"> <mml:semantics> <mml:mrow> <mml:mi>a</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi>A</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">a\\\\in A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <italic>rigidly symmetric</italic> if <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A circled-times Subscript gamma Baseline upper B\\\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:msub> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mrow> <mml:mi>γ<!-- γ --></mml:mi> </mml:mrow> </mml:msub> <mml:mi>B</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">A\\\\otimes _{\\\\gamma } B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is symmetric for every C*-algebra <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper B\\\"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. A theorem of Kügler asserts that every type I C*-algebra is rigidly symmetric. Leveraging our new constructions, we establish the converse of Kügler’s theorem by showing for C*-algebras <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A\\\"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper B\\\"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A circled-times Subscript gamma Baseline upper B\\\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:msub> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mrow> <mml:mi>γ<!-- γ --></mml:mi> </mml:mrow> </mml:msub> <mml:mi>B</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">A\\\\otimes _{\\\\gamma }B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is symmetric if and only if <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A\\\"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> or <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper B\\\"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is type I. In particular, a C*-algebra is rigidly symmetric if and only if it is type I. This strongly settles a question of Leptin and Poguntke from 1979 [J. Functional Analysis 33 (1979), pp. 119—134] and corrects an error in the literature.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/9139\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9139","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
受局部紧凑群的巴拿赫和算子代数理论最新发展的启发,我们构建了几类新的双函数 ( A , B ) ↦ A ⊗ α B (A,B)\mapsto A\otimes _{\alpha } B ,其中 A ⊗ α B A\otimes _\alpha B 是 A ⊙ B A\odot B 的交叉规范补全。B , 其中 A ⊗ α B A\otimes _\alpha B 是 A ⊙ B A\odot B 对于每一对 C* 算法 A A 和 B B 的交叉规范完成。对于所考虑的第一类双函数 ( A , B ) ↦ A ⊗ p B (A,B)\mapsto A{times _p} .B ( 1 ≤ p ≤ ∞ 1\leq p\leq \infty ), A ⊗ p B A{otimes _p}B 是 A ⊙ B A\odot B 的巴拿赫代数交叉规范补全,其构造方式类似于局部紧凑群的 p -伪函数 PF p ∗ ( G ) \text {PF}^*_p(G)。借鉴廖和余以及第二和第三位作者最近提出的对称 p p - 伪函数,我们也考虑 ⊗ p 、q {\otimes _{p,q}} for Hölder conjugate p , q∈ [ 1 , ∞ ] p,q\in [1,\infty ] - a Banach ∗ * -algebra analogue of the tensor product ⊗ p , q {\otimes _{p,q}}. .通过对 A ⊗ p , q B A{otimes _{p,q}} 的包络 C* -代数取包络 C* -代数。B ,我们得到第三个双矢量 ( A , B ) ↦ A ⊗ C p , q ∗ B (A,B)\mapsto A\{otimes _{\mathrm C^*_{p,q}}} 。B 所得到的代数 A ⊗ C p , q ∗ B A{otimes _{\mathrm C^*_{p,q}}} B 是 C* 代数。B 是一个 C* 代数。对于属于一大类离散群的 G 1 G_1 和 G 2 G_2,我们证明了张量乘积 C r ∗ ( G 1 ) ⊗ C p , q ∗ C r ∗ ( G 2 ) \mathrm C^*_{mathrm r}(G_1){\otimes _\{mathrm C^*_{p、q}}}\mathrm C^*_{m\mathrm r}(G_2) 与 ℓ 1 ( G 1 × G 2 ) \mathrm \ell ^1(G_1\times G_2) 的 Brown-Guentner 型 C* 完全重合,并得出结论:如果 2 ≤ p ′ >;p ≤ ∞ 2\leq p'>;p\leq \infty ,那么典型商映射 C r ∗ ( G ) ⊗ C p , q ∗ C r ∗ ( G ) → C r ∗ ( G ) ⊗ C p , q ∗ C r ∗ ( G ) \mathrm C^*_{\mathrm r}(G){\otimes _{\mathrm C^*_{p、到 \mathrm C^*_{mathrm r}(G){\otimes _\{mathrm C^*_{p, q}}}\mathrm C^*_{mathrm r}(G)对于一大类同时具有快速衰减性质和哈格鲁普近似性质的不可门离散群来说不是注入的。如果频谱 S p A ( a ∗ a ) \mathrm {Sp}_A(a^*a) 包含在 [ 0 , ∞ ) 中,则巴拿赫∗ * -代数 A A 是对称的。 [如果 A ⊗ γ B A\otimes _{\gamma } 是刚性对称的,则 B 是对称的。}对于每一个 C*-algebra B B 而言,B 是对称的。库格勒(Kügler)的一个定理断言,每一个 I 型 C* 代数都是刚性对称的。利用我们的新构造,我们通过证明 C* 代数 A A 和 B B 的 A ⊗ γ B A\otimes _{\gamma }B 是对称的,当且仅当 A A 或 B B 是类型 I,从而建立了库格勒定理的逆定理。这有力地解决了 Leptin 和 Poguntke 在 1979 年提出的一个问题 [J. Functional Analysis 33 (1979), pp.
New tensor products of C*-algebras and characterization of type I C*-algebras as rigidly symmetric C*-algebras
Inspired by recent developments in the theory of Banach and operator algebras of locally compact groups, we construct several new classes of bifunctors (A,B)↦A⊗αB(A,B)\mapsto A\otimes _{\alpha } B, where A⊗αBA\otimes _\alpha B is a cross norm completion of A⊙BA\odot B for each pair of C*-algebras AA and BB. For the first class of bifunctors considered (A,B)↦A⊗pB(A,B)\mapsto A{\otimes _p} B (1≤p≤∞1\leq p\leq \infty), A⊗pBA{\otimes _p} B is a Banach algebra cross-norm completion of A⊙BA\odot B constructed in a fashion similar to pp-pseudofunctions PFp∗(G)\text {PF}^*_p(G) of a locally compact group. Taking a cue from the recently introduced symmetrized pp-pseudofunctions due to Liao and Yu and later by the second and the third named authors, we also consider ⊗p,q{\otimes _{p,q}} for Hölder conjugate p,q∈[1,∞]p,q\in [1,\infty ] – a Banach ∗*-algebra analogue of the tensor product ⊗p,q{\otimes _{p,q}}. By taking enveloping C*-algebras of A⊗p,qBA{\otimes _{p,q}} B, we arrive at a third bifunctor (A,B)↦A⊗Cp,q∗B(A,B)\mapsto A{\otimes _{\mathrm C^*_{p,q}}} B where the resulting algebra A⊗Cp,q∗BA{\otimes _{\mathrm C^*_{p,q}}} B is a C*-algebra.
For G1G_1 and G2G_2 belonging to a large class of discrete groups, we show that the tensor products Cr∗(G1)⊗Cp,q∗Cr∗(G2)\mathrm C^*_{\mathrm r}(G_1){\otimes _{\mathrm C^*_{p,q}}}\mathrm C^*_{\mathrm r}(G_2) coincide with a Brown-Guentner type C*-completion of ℓ1(G1×G2)\mathrm \ell ^1(G_1\times G_2) and conclude that if 2≤p′>p≤∞2\leq p’>p\leq \infty, then the canonical quotient map Cr∗(G)⊗Cp,q∗Cr∗(G)→Cr∗(G)⊗Cp,q∗Cr∗(G)\mathrm C^*_{\mathrm r}(G){\otimes _{\mathrm C^*_{p,q}}}\mathrm C^*_{\mathrm r}(G)\to \mathrm C^*_{\mathrm r}(G){\otimes _{\mathrm C^*_{p,q}}}\mathrm C^*_{\mathrm r}(G) is not injective for a large class of non-amenable discrete groups possessing both the rapid decay property and Haagerup’s approximation property.
A Banach ∗*-algebra AA is symmetric if the spectrum SpA(a∗a)\mathrm {Sp}_A(a^*a) is contained in [0,∞)[0,\infty ) for every a∈Aa\in A, and rigidly symmetric if A⊗γBA\otimes _{\gamma } B is symmetric for every C*-algebra BB. A theorem of Kügler asserts that every type I C*-algebra is rigidly symmetric. Leveraging our new constructions, we establish the converse of Kügler’s theorem by showing for C*-algebras AA and BB that A⊗γBA\otimes _{\gamma }B is symmetric if and only if AA or BB is type I. In particular, a C*-algebra is rigidly symmetric if and only if it is type I. This strongly settles a question of Leptin and Poguntke from 1979 [J. Functional Analysis 33 (1979), pp. 119—134] and corrects an error in the literature.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.