{"title":"矩阵克罗斯特曼和的纯度位置","authors":"Márton Erdélyi, Will Sawin, Árpád Tóth","doi":"10.1090/tran/9149","DOIUrl":null,"url":null,"abstract":"<p>We construct a perverse sheaf related to the the matrix exponential sums investigated by Erdélyi and Tóth [<italic>Matrix Kloosterman sums</italic>, 2021, arXiv:2109.00762]. As this sheaf appears as a summand of certain tensor product of Kloosterman sheaves, we can establish the exact structure of the cohomology attached to the sums by relating it to the Springer correspondence and using the recursion formula of Erdélyi and Tóth.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The purity locus of matrix Kloosterman sums\",\"authors\":\"Márton Erdélyi, Will Sawin, Árpád Tóth\",\"doi\":\"10.1090/tran/9149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We construct a perverse sheaf related to the the matrix exponential sums investigated by Erdélyi and Tóth [<italic>Matrix Kloosterman sums</italic>, 2021, arXiv:2109.00762]. As this sheaf appears as a summand of certain tensor product of Kloosterman sheaves, we can establish the exact structure of the cohomology attached to the sums by relating it to the Springer correspondence and using the recursion formula of Erdélyi and Tóth.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/9149\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9149","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
我们构建了一个与埃尔德利和托特研究的矩阵指数和相关的反剪[矩阵克罗斯特曼和,2021,arXiv:2109.00762]。由于这个 sheaf 是作为 Kloosterman sheaves 的某些张量积的和出现的,我们可以通过将其与 Springer 对应关系联系起来,并使用 Erdélyi 和 Tóth 的递推公式,来建立与和相关的同调的精确结构。
We construct a perverse sheaf related to the the matrix exponential sums investigated by Erdélyi and Tóth [Matrix Kloosterman sums, 2021, arXiv:2109.00762]. As this sheaf appears as a summand of certain tensor product of Kloosterman sheaves, we can establish the exact structure of the cohomology attached to the sums by relating it to the Springer correspondence and using the recursion formula of Erdélyi and Tóth.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.