芬斯勒时空上的最优传输和时间性下里奇曲率边界

IF 1.2 2区 数学 Q1 MATHEMATICS
Mathias Braun, Shin-ichi Ohta
{"title":"芬斯勒时空上的最优传输和时间性下里奇曲率边界","authors":"Mathias Braun, Shin-ichi Ohta","doi":"10.1090/tran/9126","DOIUrl":null,"url":null,"abstract":"<p>We prove that a Finsler spacetime endowed with a smooth reference measure whose induced weighted Ricci curvature <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper R normal i normal c Subscript upper N\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"normal\">R</mml:mi> <mml:mi mathvariant=\"normal\">i</mml:mi> <mml:mi mathvariant=\"normal\">c</mml:mi> </mml:mrow> <mml:mi>N</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathrm {Ric}_N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is bounded from below by a real number <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in every timelike direction satisfies the timelike curvature-dimension condition <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper T normal upper C normal upper D Subscript q Baseline left-parenthesis upper K comma upper N right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"normal\">T</mml:mi> <mml:mi mathvariant=\"normal\">C</mml:mi> <mml:mi mathvariant=\"normal\">D</mml:mi> </mml:mrow> <mml:mi>q</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo>,</mml:mo> <mml:mi>N</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathrm {TCD}_q(K,N)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for all <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q element-of left-parenthesis 0 comma 1 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">q\\in (0,1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The converse and a nonpositive-dimensional version (<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N less-than-or-equal-to 0\"> <mml:semantics> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">N \\le 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) of this result are also shown. Our discussion is based on the solvability of the Monge problem with respect to the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\"application/x-tex\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Lorentz–Wasserstein distance as well as the characterization of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\"application/x-tex\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-geodesics of probability measures. One consequence of our work is the sharp timelike Brunn–Minkowski inequality in the Lorentz–Finsler case.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":"36 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal transport and timelike lower Ricci curvature bounds on Finsler spacetimes\",\"authors\":\"Mathias Braun, Shin-ichi Ohta\",\"doi\":\"10.1090/tran/9126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that a Finsler spacetime endowed with a smooth reference measure whose induced weighted Ricci curvature <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper R normal i normal c Subscript upper N\\\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">R</mml:mi> <mml:mi mathvariant=\\\"normal\\\">i</mml:mi> <mml:mi mathvariant=\\\"normal\\\">c</mml:mi> </mml:mrow> <mml:mi>N</mml:mi> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {Ric}_N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is bounded from below by a real number <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K\\\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in every timelike direction satisfies the timelike curvature-dimension condition <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper T normal upper C normal upper D Subscript q Baseline left-parenthesis upper K comma upper N right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">T</mml:mi> <mml:mi mathvariant=\\\"normal\\\">C</mml:mi> <mml:mi mathvariant=\\\"normal\\\">D</mml:mi> </mml:mrow> <mml:mi>q</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo>,</mml:mo> <mml:mi>N</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {TCD}_q(K,N)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for all <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"q element-of left-parenthesis 0 comma 1 right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">q\\\\in (0,1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The converse and a nonpositive-dimensional version (<inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N less-than-or-equal-to 0\\\"> <mml:semantics> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">N \\\\le 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) of this result are also shown. Our discussion is based on the solvability of the Monge problem with respect to the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"q\\\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Lorentz–Wasserstein distance as well as the characterization of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"q\\\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-geodesics of probability measures. One consequence of our work is the sharp timelike Brunn–Minkowski inequality in the Lorentz–Finsler case.</p>\",\"PeriodicalId\":23209,\"journal\":{\"name\":\"Transactions of the American Mathematical Society\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/9126\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9126","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了一个赋有光滑参考量度的芬斯勒时空,其诱导加权里奇曲率 R i c N \mathrm {Ric}_N 在每个时间方向上自下而上被实数 K K 限定,满足所有 q∈ ( 0 , 1 ) q\in (0,1) 的时间曲率维度条件 T C D q ( K , N ) \mathrm {TCD}_q(K,N) 。这个结果的反面和非正维版本 ( N ≤ 0 N \le 0 ) 也被展示出来。我们的讨论基于 Monge 问题关于 q q -Lorentz-Wasserstein 距离的可解性以及概率测度的 q q -geodesics 的特征。我们工作的一个结果是洛伦兹-芬斯勒情况下的尖锐时间状布伦-闵科夫斯基不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal transport and timelike lower Ricci curvature bounds on Finsler spacetimes

We prove that a Finsler spacetime endowed with a smooth reference measure whose induced weighted Ricci curvature R i c N \mathrm {Ric}_N is bounded from below by a real number K K in every timelike direction satisfies the timelike curvature-dimension condition T C D q ( K , N ) \mathrm {TCD}_q(K,N) for all q ( 0 , 1 ) q\in (0,1) . The converse and a nonpositive-dimensional version ( N 0 N \le 0 ) of this result are also shown. Our discussion is based on the solvability of the Monge problem with respect to the q q -Lorentz–Wasserstein distance as well as the characterization of q q -geodesics of probability measures. One consequence of our work is the sharp timelike Brunn–Minkowski inequality in the Lorentz–Finsler case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.70%
发文量
171
审稿时长
3-6 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信