发泡硅橡胶的简易合成方法

IF 2.5 4区 材料科学 Q2 CHEMISTRY, APPLIED
Jingjing Yang, Zhichen Zhu, Li Jiang, Xiang Jin, Hongjun Yang, Qimin Jiang, Xiaoqiang Xue, Bibiao Jiang, Wenyan Huang
{"title":"发泡硅橡胶的简易合成方法","authors":"Jingjing Yang,&nbsp;Zhichen Zhu,&nbsp;Li Jiang,&nbsp;Xiang Jin,&nbsp;Hongjun Yang,&nbsp;Qimin Jiang,&nbsp;Xiaoqiang Xue,&nbsp;Bibiao Jiang,&nbsp;Wenyan Huang","doi":"10.1007/s10934-024-01605-9","DOIUrl":null,"url":null,"abstract":"<div><p>Foamed silicone rubber was prepared by mixing 45% vinyl silicone oil (Base), Karstedt platinum catalyst (Cata), and hydrogenated silicone oil (SiH) and the resulting material was subjected to secondary vulcanization, which led to its performance requirements. Vinyl silicone oil and hydrogenated silicone oil underwent an addition reaction under the action of a platinum catalyst to form an elastomer with a cross-linked network structure. The results showed that by increasing the content of hydrogenated silicone oil in the formulation, the elongation at break of the foamed silicone gel material decreased but the tensile strength increased. When the content of hydrogenated silicone oil in the formulation decreased, the elongation at break of the foamed silicone material increased. When the content of Karstedt catalyst in the formulation increased, the formation time of the reaction gel was greatly shortened, and the cell structure tended to be dense but delicate. When the proportion of vinyl silicone oil in the formulation increased, the elongation at break of the foamed, molded silicone rubber increased. However, the elastic modulus decreased, and the thermal stability improved. Finally, a more suitable formulation of <i>V</i><sub>Base</sub>:<i>V</i><sub>Cata</sub>:<i>V</i><sub>SiH</sub> = 32:1:2 was obtained, which showed a tear resistance of 5.52 KN/m, ductility of 133%, and limiting oxygen index of 26 with a stability temperature of 346.8 °C when the thermal mass loss reached 95%.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"31 3","pages":"1143 - 1153"},"PeriodicalIF":2.5000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A facile method for the synthesis of foamed silicone rubber\",\"authors\":\"Jingjing Yang,&nbsp;Zhichen Zhu,&nbsp;Li Jiang,&nbsp;Xiang Jin,&nbsp;Hongjun Yang,&nbsp;Qimin Jiang,&nbsp;Xiaoqiang Xue,&nbsp;Bibiao Jiang,&nbsp;Wenyan Huang\",\"doi\":\"10.1007/s10934-024-01605-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Foamed silicone rubber was prepared by mixing 45% vinyl silicone oil (Base), Karstedt platinum catalyst (Cata), and hydrogenated silicone oil (SiH) and the resulting material was subjected to secondary vulcanization, which led to its performance requirements. Vinyl silicone oil and hydrogenated silicone oil underwent an addition reaction under the action of a platinum catalyst to form an elastomer with a cross-linked network structure. The results showed that by increasing the content of hydrogenated silicone oil in the formulation, the elongation at break of the foamed silicone gel material decreased but the tensile strength increased. When the content of hydrogenated silicone oil in the formulation decreased, the elongation at break of the foamed silicone material increased. When the content of Karstedt catalyst in the formulation increased, the formation time of the reaction gel was greatly shortened, and the cell structure tended to be dense but delicate. When the proportion of vinyl silicone oil in the formulation increased, the elongation at break of the foamed, molded silicone rubber increased. However, the elastic modulus decreased, and the thermal stability improved. Finally, a more suitable formulation of <i>V</i><sub>Base</sub>:<i>V</i><sub>Cata</sub>:<i>V</i><sub>SiH</sub> = 32:1:2 was obtained, which showed a tear resistance of 5.52 KN/m, ductility of 133%, and limiting oxygen index of 26 with a stability temperature of 346.8 °C when the thermal mass loss reached 95%.</p></div>\",\"PeriodicalId\":660,\"journal\":{\"name\":\"Journal of Porous Materials\",\"volume\":\"31 3\",\"pages\":\"1143 - 1153\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Porous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10934-024-01605-9\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10934-024-01605-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

将 45% 的乙烯基硅油(Base)、Karstedt 铂催化剂(Cata)和氢化硅油(SiH)混合,制备出发泡硅橡胶,并对所得材料进行二次硫化,从而达到其性能要求。乙烯基硅油和氢化硅油在铂催化剂的作用下发生加成反应,形成具有交联网络结构的弹性体。结果表明,随着配方中氢化硅油含量的增加,发泡硅凝胶材料的断裂伸长率降低,但拉伸强度增加。当配方中氢化硅油的含量降低时,发泡硅胶材料的断裂伸长率增加。当配方中卡氏催化剂的含量增加时,反应凝胶的形成时间大大缩短,细胞结构趋于致密但细腻。当配方中乙烯基硅油的比例增加时,发泡成型硅橡胶的断裂伸长率增加。但弹性模量下降,热稳定性提高。最后,得到了 VBase:VCata:VSiH = 32:1:2 的更合适配方,当热质量损失达到 95% 时,该配方的抗撕裂性为 5.52 KN/m,延展性为 133%,极限氧指数为 26,稳定温度为 346.8 °C。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A facile method for the synthesis of foamed silicone rubber

A facile method for the synthesis of foamed silicone rubber

A facile method for the synthesis of foamed silicone rubber

Foamed silicone rubber was prepared by mixing 45% vinyl silicone oil (Base), Karstedt platinum catalyst (Cata), and hydrogenated silicone oil (SiH) and the resulting material was subjected to secondary vulcanization, which led to its performance requirements. Vinyl silicone oil and hydrogenated silicone oil underwent an addition reaction under the action of a platinum catalyst to form an elastomer with a cross-linked network structure. The results showed that by increasing the content of hydrogenated silicone oil in the formulation, the elongation at break of the foamed silicone gel material decreased but the tensile strength increased. When the content of hydrogenated silicone oil in the formulation decreased, the elongation at break of the foamed silicone material increased. When the content of Karstedt catalyst in the formulation increased, the formation time of the reaction gel was greatly shortened, and the cell structure tended to be dense but delicate. When the proportion of vinyl silicone oil in the formulation increased, the elongation at break of the foamed, molded silicone rubber increased. However, the elastic modulus decreased, and the thermal stability improved. Finally, a more suitable formulation of VBase:VCata:VSiH = 32:1:2 was obtained, which showed a tear resistance of 5.52 KN/m, ductility of 133%, and limiting oxygen index of 26 with a stability temperature of 346.8 °C when the thermal mass loss reached 95%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Porous Materials
Journal of Porous Materials 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.70%
发文量
203
审稿时长
2.6 months
期刊介绍: The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials. Porous materials include microporous materials with 50 nm pores. Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信