利用深度强化学习进行投资组合管理

Ashish Anil Pawar, Vishnureddy Prashant Muskawar, Ritesh Tiku
{"title":"利用深度强化学习进行投资组合管理","authors":"Ashish Anil Pawar, Vishnureddy Prashant Muskawar, Ritesh Tiku","doi":"arxiv-2405.01604","DOIUrl":null,"url":null,"abstract":"Algorithmic trading or Financial robots have been conquering the stock\nmarkets with their ability to fathom complex statistical trading strategies.\nBut with the recent development of deep learning technologies, these strategies\nare becoming impotent. The DQN and A2C models have previously outperformed\neminent humans in game-playing and robotics. In our work, we propose a\nreinforced portfolio manager offering assistance in the allocation of weights\nto assets. The environment proffers the manager the freedom to go long and even\nshort on the assets. The weight allocation advisements are restricted to the\nchoice of portfolio assets and tested empirically to knock benchmark indices.\nThe manager performs financial transactions in a postulated liquid market\nwithout any transaction charges. This work provides the conclusion that the\nproposed portfolio manager with actions centered on weight allocations can\nsurpass the risk-adjusted returns of conventional portfolio managers.","PeriodicalId":501045,"journal":{"name":"arXiv - QuantFin - Portfolio Management","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Portfolio Management using Deep Reinforcement Learning\",\"authors\":\"Ashish Anil Pawar, Vishnureddy Prashant Muskawar, Ritesh Tiku\",\"doi\":\"arxiv-2405.01604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Algorithmic trading or Financial robots have been conquering the stock\\nmarkets with their ability to fathom complex statistical trading strategies.\\nBut with the recent development of deep learning technologies, these strategies\\nare becoming impotent. The DQN and A2C models have previously outperformed\\neminent humans in game-playing and robotics. In our work, we propose a\\nreinforced portfolio manager offering assistance in the allocation of weights\\nto assets. The environment proffers the manager the freedom to go long and even\\nshort on the assets. The weight allocation advisements are restricted to the\\nchoice of portfolio assets and tested empirically to knock benchmark indices.\\nThe manager performs financial transactions in a postulated liquid market\\nwithout any transaction charges. This work provides the conclusion that the\\nproposed portfolio manager with actions centered on weight allocations can\\nsurpass the risk-adjusted returns of conventional portfolio managers.\",\"PeriodicalId\":501045,\"journal\":{\"name\":\"arXiv - QuantFin - Portfolio Management\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Portfolio Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.01604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.01604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

算法交易或金融机器人凭借其揣摩复杂统计交易策略的能力征服了股票市场,但随着最近深度学习技术的发展,这些策略正变得无能为力。之前,DQN 和 A2C 模型在游戏和机器人领域的表现已经超越了杰出的人类。在我们的工作中,我们提出了一个强制投资组合经理,在资产权重分配方面提供帮助。环境为经理提供了做多甚至做空资产的自由。权重分配建议仅限于投资组合资产的选择,并对基准指数进行了实证测试。管理人在假设的流动市场上进行金融交易,不收取任何交易费用。这项研究得出的结论是,以权重分配为中心的投资组合经理能够超越传统投资组合经理的风险调整收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Portfolio Management using Deep Reinforcement Learning
Algorithmic trading or Financial robots have been conquering the stock markets with their ability to fathom complex statistical trading strategies. But with the recent development of deep learning technologies, these strategies are becoming impotent. The DQN and A2C models have previously outperformed eminent humans in game-playing and robotics. In our work, we propose a reinforced portfolio manager offering assistance in the allocation of weights to assets. The environment proffers the manager the freedom to go long and even short on the assets. The weight allocation advisements are restricted to the choice of portfolio assets and tested empirically to knock benchmark indices. The manager performs financial transactions in a postulated liquid market without any transaction charges. This work provides the conclusion that the proposed portfolio manager with actions centered on weight allocations can surpass the risk-adjusted returns of conventional portfolio managers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信