通过测量莫斯科大城市行星边界层的温度倒转特征对天气预报数值模型参数化进行调整的结果

IF 0.9 4区 地球科学 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES
R. V. Zhuravlev, E. A. Miller, A. K. Knyazev, N. A. Baranov, E. A. Lezina, A. V. Troitskii
{"title":"通过测量莫斯科大城市行星边界层的温度倒转特征对天气预报数值模型参数化进行调整的结果","authors":"R. V. Zhuravlev, E. A. Miller, A. K. Knyazev, N. A. Baranov, E. A. Lezina, A. V. Troitskii","doi":"10.1134/s0001433824700075","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this work, the optimal parametrization of a mesoscale meteorological model is sought based on a comparative analysis of model forecasts and measurement results on temperature inversions in the planetary boundary layer of the atmosphere of the Moscow megapolis. The WRF–ARW model was tested with several different combinations of physical parameterizations to assess the prediction quality for temperature inversion parameter over Moscow. The dynamic and statistical characteristics of temperature inversions have been calculated and analyzed in selecting criteria for the comparisons. The terms of temperature inversion destruction are estimated depending on the inversion type. The measurement results on temperature profiles in the layer of up to 1 km obtained by an MTP-5 passive microwave profiler from 2018 to 2021 served as the data source. One MTP-5 in the north of Moscow was used to tune the model parameters, and another one on the east of Moscow was used for validation. The comparison results show that the model can be optimally tuned using a set of several parameterization variants.</p>","PeriodicalId":54911,"journal":{"name":"Izvestiya Atmospheric and Oceanic Physics","volume":"66 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Results of Tuned Parameterizations of a Weather Forecast Numerical Model by Measured Characteristics of Temperature Inversions in the Planetary Boundary Layer of the Moscow Megapolis\",\"authors\":\"R. V. Zhuravlev, E. A. Miller, A. K. Knyazev, N. A. Baranov, E. A. Lezina, A. V. Troitskii\",\"doi\":\"10.1134/s0001433824700075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>In this work, the optimal parametrization of a mesoscale meteorological model is sought based on a comparative analysis of model forecasts and measurement results on temperature inversions in the planetary boundary layer of the atmosphere of the Moscow megapolis. The WRF–ARW model was tested with several different combinations of physical parameterizations to assess the prediction quality for temperature inversion parameter over Moscow. The dynamic and statistical characteristics of temperature inversions have been calculated and analyzed in selecting criteria for the comparisons. The terms of temperature inversion destruction are estimated depending on the inversion type. The measurement results on temperature profiles in the layer of up to 1 km obtained by an MTP-5 passive microwave profiler from 2018 to 2021 served as the data source. One MTP-5 in the north of Moscow was used to tune the model parameters, and another one on the east of Moscow was used for validation. The comparison results show that the model can be optimally tuned using a set of several parameterization variants.</p>\",\"PeriodicalId\":54911,\"journal\":{\"name\":\"Izvestiya Atmospheric and Oceanic Physics\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Atmospheric and Oceanic Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1134/s0001433824700075\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Atmospheric and Oceanic Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1134/s0001433824700075","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在这项工作中,根据对莫斯科大城市大气行星边界层温度倒转的模型预测和测量结果的比较分析,寻求了中尺度气象模型的最佳参数化。对 WRF-ARW 模式进行了测试,采用了几种不同的物理参数组合,以评估莫斯科上空温度倒转参数的预测质量。在选择比较标准时,计算和分析了温度倒转的动态和统计特征。根据反转类型,对温度反转破坏的条件进行了估算。数据来源是 MTP-5 型被动微波剖面仪在 2018 年至 2021 年期间获得的 1 千米以下温度剖面测量结果。莫斯科北部的一台 MTP-5 用于调整模型参数,莫斯科东部的另一台用于验证。对比结果表明,该模型可以使用一组多个参数化变体进行优化调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Results of Tuned Parameterizations of a Weather Forecast Numerical Model by Measured Characteristics of Temperature Inversions in the Planetary Boundary Layer of the Moscow Megapolis

Results of Tuned Parameterizations of a Weather Forecast Numerical Model by Measured Characteristics of Temperature Inversions in the Planetary Boundary Layer of the Moscow Megapolis

Abstract

In this work, the optimal parametrization of a mesoscale meteorological model is sought based on a comparative analysis of model forecasts and measurement results on temperature inversions in the planetary boundary layer of the atmosphere of the Moscow megapolis. The WRF–ARW model was tested with several different combinations of physical parameterizations to assess the prediction quality for temperature inversion parameter over Moscow. The dynamic and statistical characteristics of temperature inversions have been calculated and analyzed in selecting criteria for the comparisons. The terms of temperature inversion destruction are estimated depending on the inversion type. The measurement results on temperature profiles in the layer of up to 1 km obtained by an MTP-5 passive microwave profiler from 2018 to 2021 served as the data source. One MTP-5 in the north of Moscow was used to tune the model parameters, and another one on the east of Moscow was used for validation. The comparison results show that the model can be optimally tuned using a set of several parameterization variants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
28.60%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Izvestiya, Atmospheric and Oceanic Physics is a journal that publishes original scientific research and review articles on vital issues in the physics of the Earth’s atmosphere and hydrosphere and climate theory. The journal presents results of recent studies of physical processes in the atmosphere and ocean that control climate, weather, and their changes. These studies have possible practical applications. The journal also gives room to the discussion of results obtained in theoretical and experimental studies in various fields of oceanic and atmospheric physics, such as the dynamics of gas and water media, interaction of the atmosphere with the ocean and land surfaces, turbulence theory, heat balance and radiation processes, remote sensing and optics of both media, natural and man-induced climate changes, and the state of the atmosphere and ocean. The journal publishes papers on research techniques used in both media, current scientific information on domestic and foreign events in the physics of the atmosphere and ocean.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信