{"title":"二羧酸链长对水性聚醚酯摩擦学特性的影响","authors":"Wenqiang Shao, Chao Xu, Xiaobo Wang, Xiaoling Liu, Wenjing Lou","doi":"10.1002/ls.1706","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This article presents the preparation of environmentally friendly water-soluble lubricant additives. Adipic acid (AA), sebacic acid (SA) and dodecanedioic acid (DA) were individually subjected to esterification reactions with polyethylene glycol 1500 (PEG1500) to prepare a class of water-soluble polyether esters (AAPEE1500, SAPEE1500 and DAPEE1500) (referred to as XAPEE1500s) that exhibit excellent water solubility and do not contain environmentally harmful elements. First, the molecular structure characterisation and functional group analysis of these additives will be conducted using an infrared spectrometer and a nuclear magnetic resonance spectrometer. Subsequently, the frictional properties of the additives in the base liquid (deionised water) will be investigated using an SRV-V tribometer, Falex pin-on-disc tribometer and screw torque tester. The surface morphology of wear scars will be characterised and analysed using scanning electron microscopy (SEM) and a non-contact 3D profilometer. Finally, the lubrication mechanism of the DAPEE1500 additive will be analysed using X-ray photoelectron spectroscopy (XPS). The results indicate that the optimal lubrication performance is achieved when the added mass fraction of DAPEE1500 is at 3%. Compared with 0.5 wt% DAPEE1500, the average friction coefficient of 3 wt% DAPEE1500 decreased from 0.285 to 0.122, and the wear volume decreased from 25.52 × 10<sup>−5</sup> μm<sup>3</sup> to 10.96 × 10<sup>−5</sup> μm<sup>3</sup>. The lubrication mechanism of polyether ester is the result of the combined action of its polar ester functional groups and long carboxylic acid chains in the structure. These polar functional groups can form a relatively firm adsorption film on the friction surface, while the long carboxylic acid chains act as a brush-like isolating layer, thus demonstrating superior anti-wear and anti-friction performance.</p>\n </div>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":"36 7","pages":"511-520"},"PeriodicalIF":1.8000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Dicarboxylic Acid Chain Length on the Tribological Properties of Aqueous Polyether Esters\",\"authors\":\"Wenqiang Shao, Chao Xu, Xiaobo Wang, Xiaoling Liu, Wenjing Lou\",\"doi\":\"10.1002/ls.1706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This article presents the preparation of environmentally friendly water-soluble lubricant additives. Adipic acid (AA), sebacic acid (SA) and dodecanedioic acid (DA) were individually subjected to esterification reactions with polyethylene glycol 1500 (PEG1500) to prepare a class of water-soluble polyether esters (AAPEE1500, SAPEE1500 and DAPEE1500) (referred to as XAPEE1500s) that exhibit excellent water solubility and do not contain environmentally harmful elements. First, the molecular structure characterisation and functional group analysis of these additives will be conducted using an infrared spectrometer and a nuclear magnetic resonance spectrometer. Subsequently, the frictional properties of the additives in the base liquid (deionised water) will be investigated using an SRV-V tribometer, Falex pin-on-disc tribometer and screw torque tester. The surface morphology of wear scars will be characterised and analysed using scanning electron microscopy (SEM) and a non-contact 3D profilometer. Finally, the lubrication mechanism of the DAPEE1500 additive will be analysed using X-ray photoelectron spectroscopy (XPS). The results indicate that the optimal lubrication performance is achieved when the added mass fraction of DAPEE1500 is at 3%. Compared with 0.5 wt% DAPEE1500, the average friction coefficient of 3 wt% DAPEE1500 decreased from 0.285 to 0.122, and the wear volume decreased from 25.52 × 10<sup>−5</sup> μm<sup>3</sup> to 10.96 × 10<sup>−5</sup> μm<sup>3</sup>. The lubrication mechanism of polyether ester is the result of the combined action of its polar ester functional groups and long carboxylic acid chains in the structure. These polar functional groups can form a relatively firm adsorption film on the friction surface, while the long carboxylic acid chains act as a brush-like isolating layer, thus demonstrating superior anti-wear and anti-friction performance.</p>\\n </div>\",\"PeriodicalId\":18114,\"journal\":{\"name\":\"Lubrication Science\",\"volume\":\"36 7\",\"pages\":\"511-520\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubrication Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ls.1706\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubrication Science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ls.1706","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Effect of Dicarboxylic Acid Chain Length on the Tribological Properties of Aqueous Polyether Esters
This article presents the preparation of environmentally friendly water-soluble lubricant additives. Adipic acid (AA), sebacic acid (SA) and dodecanedioic acid (DA) were individually subjected to esterification reactions with polyethylene glycol 1500 (PEG1500) to prepare a class of water-soluble polyether esters (AAPEE1500, SAPEE1500 and DAPEE1500) (referred to as XAPEE1500s) that exhibit excellent water solubility and do not contain environmentally harmful elements. First, the molecular structure characterisation and functional group analysis of these additives will be conducted using an infrared spectrometer and a nuclear magnetic resonance spectrometer. Subsequently, the frictional properties of the additives in the base liquid (deionised water) will be investigated using an SRV-V tribometer, Falex pin-on-disc tribometer and screw torque tester. The surface morphology of wear scars will be characterised and analysed using scanning electron microscopy (SEM) and a non-contact 3D profilometer. Finally, the lubrication mechanism of the DAPEE1500 additive will be analysed using X-ray photoelectron spectroscopy (XPS). The results indicate that the optimal lubrication performance is achieved when the added mass fraction of DAPEE1500 is at 3%. Compared with 0.5 wt% DAPEE1500, the average friction coefficient of 3 wt% DAPEE1500 decreased from 0.285 to 0.122, and the wear volume decreased from 25.52 × 10−5 μm3 to 10.96 × 10−5 μm3. The lubrication mechanism of polyether ester is the result of the combined action of its polar ester functional groups and long carboxylic acid chains in the structure. These polar functional groups can form a relatively firm adsorption film on the friction surface, while the long carboxylic acid chains act as a brush-like isolating layer, thus demonstrating superior anti-wear and anti-friction performance.
期刊介绍:
Lubrication Science is devoted to high-quality research which notably advances fundamental and applied aspects of the science and technology related to lubrication. It publishes research articles, short communications and reviews which demonstrate novelty and cutting edge science in the field, aiming to become a key specialised venue for communicating advances in lubrication research and development.
Lubrication is a diverse discipline ranging from lubrication concepts in industrial and automotive engineering, solid-state and gas lubrication, micro & nanolubrication phenomena, to lubrication in biological systems. To investigate these areas the scope of the journal encourages fundamental and application-based studies on:
Synthesis, chemistry and the broader development of high-performing and environmentally adapted lubricants and additives.
State of the art analytical tools and characterisation of lubricants, lubricated surfaces and interfaces.
Solid lubricants, self-lubricating coatings and composites, lubricating nanoparticles.
Gas lubrication.
Extreme-conditions lubrication.
Green-lubrication technology and lubricants.
Tribochemistry and tribocorrosion of environment- and lubricant-interface interactions.
Modelling of lubrication mechanisms and interface phenomena on different scales: from atomic and molecular to mezzo and structural.
Modelling hydrodynamic and thin film lubrication.
All lubrication related aspects of nanotribology.
Surface-lubricant interface interactions and phenomena: wetting, adhesion and adsorption.
Bio-lubrication, bio-lubricants and lubricated biological systems.
Other novel and cutting-edge aspects of lubrication in all lubrication regimes.