$$C^{1}$ -Smooth $$\Omega$$ -Stable Skew Products and Completely Geometrically Integrable Self-Maps of 3D-Tori, I:$$\Omega$$ - 稳定性

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Lyudmila S. Efremova
{"title":"$$C^{1}$ -Smooth $$\\Omega$$ -Stable Skew Products and Completely Geometrically Integrable Self-Maps of 3D-Tori, I:$$\\Omega$$ - 稳定性","authors":"Lyudmila S. Efremova","doi":"10.1134/S1560354724520010","DOIUrl":null,"url":null,"abstract":"<div><p>We prove here the criterion of <span>\\(C^{1}\\)</span>- <span>\\(\\Omega\\)</span>-stability of self-maps of a 3D-torus, which\nare skew products of circle maps. The <span>\\(C^{1}\\)</span>- <span>\\(\\Omega\\)</span>-stability property is studied with respect to homeomorphisms of skew products type. We give here an example of the <span>\\(\\Omega\\)</span>-stable map on a 3D-torus and investigate approximating properties of maps under consideration.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"29 3","pages":"491 - 514"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"\\\\(C^{1}\\\\)-Smooth \\\\(\\\\Omega\\\\)-Stable Skew Products and Completely Geometrically Integrable Self-Maps of 3D-Tori, I: \\\\(\\\\Omega\\\\)-Stability\",\"authors\":\"Lyudmila S. Efremova\",\"doi\":\"10.1134/S1560354724520010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove here the criterion of <span>\\\\(C^{1}\\\\)</span>- <span>\\\\(\\\\Omega\\\\)</span>-stability of self-maps of a 3D-torus, which\\nare skew products of circle maps. The <span>\\\\(C^{1}\\\\)</span>- <span>\\\\(\\\\Omega\\\\)</span>-stability property is studied with respect to homeomorphisms of skew products type. We give here an example of the <span>\\\\(\\\\Omega\\\\)</span>-stable map on a 3D-torus and investigate approximating properties of maps under consideration.</p></div>\",\"PeriodicalId\":752,\"journal\":{\"name\":\"Regular and Chaotic Dynamics\",\"volume\":\"29 3\",\"pages\":\"491 - 514\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regular and Chaotic Dynamics\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1560354724520010\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Chaotic Dynamics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S1560354724520010","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们在这里证明了三维环的自映射的((C^{1}\)-\(\Omega\)-稳定性标准,这些自映射是圆映射的偏积。我们研究了斜积类型的同构的(C^{1}\)-\(\Omega\)-稳定性。我们在这里给出了一个三维副面上的(\ω\)-稳定映射的例子,并研究了所考虑的映射的近似性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
\(C^{1}\)-Smooth \(\Omega\)-Stable Skew Products and Completely Geometrically Integrable Self-Maps of 3D-Tori, I: \(\Omega\)-Stability

We prove here the criterion of \(C^{1}\)- \(\Omega\)-stability of self-maps of a 3D-torus, which are skew products of circle maps. The \(C^{1}\)- \(\Omega\)-stability property is studied with respect to homeomorphisms of skew products type. We give here an example of the \(\Omega\)-stable map on a 3D-torus and investigate approximating properties of maps under consideration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.10%
发文量
35
审稿时长
>12 weeks
期刊介绍: Regular and Chaotic Dynamics (RCD) is an international journal publishing original research papers in dynamical systems theory and its applications. Rooted in the Moscow school of mathematics and mechanics, the journal successfully combines classical problems, modern mathematical techniques and breakthroughs in the field. Regular and Chaotic Dynamics welcomes papers that establish original results, characterized by rigorous mathematical settings and proofs, and that also address practical problems. In addition to research papers, the journal publishes review articles, historical and polemical essays, and translations of works by influential scientists of past centuries, previously unavailable in English. Along with regular issues, RCD also publishes special issues devoted to particular topics and events in the world of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信