Peter S. Park, Simon Goldstein, Aidan O’Gara, Michael Chen, Dan Hendrycks
{"title":"人工智能欺骗:实例、风险和潜在解决方案调查","authors":"Peter S. Park, Simon Goldstein, Aidan O’Gara, Michael Chen, Dan Hendrycks","doi":"10.1016/j.patter.2024.100988","DOIUrl":null,"url":null,"abstract":"<p>This paper argues that a range of current AI systems have learned how to deceive humans. We define deception as the systematic inducement of false beliefs in the pursuit of some outcome other than the truth. We first survey empirical examples of AI deception, discussing both special-use AI systems (including Meta’s CICERO) and general-purpose AI systems (including large language models). Next, we detail several risks from AI deception, such as fraud, election tampering, and losing control of AI. Finally, we outline several potential solutions: first, regulatory frameworks should subject AI systems that are capable of deception to robust risk-assessment requirements; second, policymakers should implement bot-or-not laws; and finally, policymakers should prioritize the funding of relevant research, including tools to detect AI deception and to make AI systems less deceptive. Policymakers, researchers, and the broader public should work proactively to prevent AI deception from destabilizing the shared foundations of our society.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"253 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI deception: A survey of examples, risks, and potential solutions\",\"authors\":\"Peter S. Park, Simon Goldstein, Aidan O’Gara, Michael Chen, Dan Hendrycks\",\"doi\":\"10.1016/j.patter.2024.100988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper argues that a range of current AI systems have learned how to deceive humans. We define deception as the systematic inducement of false beliefs in the pursuit of some outcome other than the truth. We first survey empirical examples of AI deception, discussing both special-use AI systems (including Meta’s CICERO) and general-purpose AI systems (including large language models). Next, we detail several risks from AI deception, such as fraud, election tampering, and losing control of AI. Finally, we outline several potential solutions: first, regulatory frameworks should subject AI systems that are capable of deception to robust risk-assessment requirements; second, policymakers should implement bot-or-not laws; and finally, policymakers should prioritize the funding of relevant research, including tools to detect AI deception and to make AI systems less deceptive. Policymakers, researchers, and the broader public should work proactively to prevent AI deception from destabilizing the shared foundations of our society.</p>\",\"PeriodicalId\":36242,\"journal\":{\"name\":\"Patterns\",\"volume\":\"253 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Patterns\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.patter.2024.100988\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.100988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
摘要
本文认为,当前一系列人工智能系统已经学会了如何欺骗人类。我们将欺骗定义为系统性地诱导错误信念,以追求某种非真相的结果。我们首先调查了人工智能欺骗的实证案例,讨论了特殊用途人工智能系统(包括 Meta 的 CICERO)和通用人工智能系统(包括大型语言模型)。接下来,我们详细介绍了人工智能欺骗的几种风险,如欺诈、篡改选举和失去对人工智能的控制。最后,我们概述了几种潜在的解决方案:首先,监管框架应该对能够进行欺骗的人工智能系统提出严格的风险评估要求;其次,政策制定者应该实施 "要么机器人,要么不机器人 "的法律;最后,政策制定者应该优先资助相关研究,包括检测人工智能欺骗行为和减少人工智能系统欺骗性的工具。政策制定者、研究人员和广大公众应积极努力,防止人工智能欺骗行为破坏我们社会的共同基础。
AI deception: A survey of examples, risks, and potential solutions
This paper argues that a range of current AI systems have learned how to deceive humans. We define deception as the systematic inducement of false beliefs in the pursuit of some outcome other than the truth. We first survey empirical examples of AI deception, discussing both special-use AI systems (including Meta’s CICERO) and general-purpose AI systems (including large language models). Next, we detail several risks from AI deception, such as fraud, election tampering, and losing control of AI. Finally, we outline several potential solutions: first, regulatory frameworks should subject AI systems that are capable of deception to robust risk-assessment requirements; second, policymakers should implement bot-or-not laws; and finally, policymakers should prioritize the funding of relevant research, including tools to detect AI deception and to make AI systems less deceptive. Policymakers, researchers, and the broader public should work proactively to prevent AI deception from destabilizing the shared foundations of our society.