完整双方位图奇数包络的图兰数

Pub Date : 2024-05-09 DOI:10.1002/jgt.23118
Xing Peng, Mengjie Xia
{"title":"完整双方位图奇数包络的图兰数","authors":"Xing Peng,&nbsp;Mengjie Xia","doi":"10.1002/jgt.23118","DOIUrl":null,"url":null,"abstract":"<p>Given a graph <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math>, the Turán number <span></span><math>\n <semantics>\n <mrow>\n <mtext>ex</mtext>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>L</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{ex}(n,L)$</annotation>\n </semantics></math> is the maximum possible number of edges in an <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>-vertex <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math>-free graph. The study of Turán number of graphs is a central topic in extremal graph theory. Although the celebrated Erdős-Stone-Simonovits theorem gives the asymptotic value of <span></span><math>\n <semantics>\n <mrow>\n <mtext>ex</mtext>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>L</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{ex}(n,L)$</annotation>\n </semantics></math> for nonbipartite <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math>, it is challenging in general to determine the exact value of <span></span><math>\n <semantics>\n <mrow>\n <mtext>ex</mtext>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>L</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{ex}(n,L)$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mi>χ</mi>\n <mrow>\n <mo>(</mo>\n <mi>L</mi>\n <mo>)</mo>\n </mrow>\n <mo>≥</mo>\n <mn>3</mn>\n </mrow>\n <annotation> $\\chi (L)\\ge 3$</annotation>\n </semantics></math>. The odd-ballooning of <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> is a graph such that each edge of <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> is replaced by an odd cycle and all new vertices of odd cycles are distinct. Here the length of odd cycles is not necessarily equal. The exact value of Turán number of the odd-ballooning of <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> is previously known for <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> being a cycle, a path, a tree with assumptions, and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>K</mi>\n <mrow>\n <mn>2</mn>\n <mo>,</mo>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${K}_{2,3}$</annotation>\n </semantics></math>. In this paper, we manage to obtain the exact value of Turán number of the odd-ballooning of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>K</mi>\n <mrow>\n <mi>s</mi>\n <mo>,</mo>\n <mi>t</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${K}_{s,t}$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mo>≤</mo>\n <mi>s</mi>\n <mo>≤</mo>\n <mi>t</mi>\n </mrow>\n <annotation> $2\\le s\\le t$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>s</mi>\n <mo>,</mo>\n <mi>t</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>∉</mo>\n <mrow>\n <mo>{</mo>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>2</mn>\n <mo>,</mo>\n <mn>2</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>2</mn>\n <mo>,</mo>\n <mn>3</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation> $(s,t)\\notin \\{(2,2),(2,3)\\}$</annotation>\n </semantics></math> and each odd cycle has length at least five.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turán number of the odd-ballooning of complete bipartite graphs\",\"authors\":\"Xing Peng,&nbsp;Mengjie Xia\",\"doi\":\"10.1002/jgt.23118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <annotation> $L$</annotation>\\n </semantics></math>, the Turán number <span></span><math>\\n <semantics>\\n <mrow>\\n <mtext>ex</mtext>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>L</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\text{ex}(n,L)$</annotation>\\n </semantics></math> is the maximum possible number of edges in an <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>-vertex <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <annotation> $L$</annotation>\\n </semantics></math>-free graph. The study of Turán number of graphs is a central topic in extremal graph theory. Although the celebrated Erdős-Stone-Simonovits theorem gives the asymptotic value of <span></span><math>\\n <semantics>\\n <mrow>\\n <mtext>ex</mtext>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>L</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\text{ex}(n,L)$</annotation>\\n </semantics></math> for nonbipartite <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <annotation> $L$</annotation>\\n </semantics></math>, it is challenging in general to determine the exact value of <span></span><math>\\n <semantics>\\n <mrow>\\n <mtext>ex</mtext>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>L</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\text{ex}(n,L)$</annotation>\\n </semantics></math> for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>χ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>L</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>≥</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation> $\\\\chi (L)\\\\ge 3$</annotation>\\n </semantics></math>. The odd-ballooning of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n <annotation> $H$</annotation>\\n </semantics></math> is a graph such that each edge of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n <annotation> $H$</annotation>\\n </semantics></math> is replaced by an odd cycle and all new vertices of odd cycles are distinct. Here the length of odd cycles is not necessarily equal. The exact value of Turán number of the odd-ballooning of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n <annotation> $H$</annotation>\\n </semantics></math> is previously known for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n <annotation> $H$</annotation>\\n </semantics></math> being a cycle, a path, a tree with assumptions, and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>K</mi>\\n <mrow>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation> ${K}_{2,3}$</annotation>\\n </semantics></math>. In this paper, we manage to obtain the exact value of Turán number of the odd-ballooning of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>K</mi>\\n <mrow>\\n <mi>s</mi>\\n <mo>,</mo>\\n <mi>t</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation> ${K}_{s,t}$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mo>≤</mo>\\n <mi>s</mi>\\n <mo>≤</mo>\\n <mi>t</mi>\\n </mrow>\\n <annotation> $2\\\\le s\\\\le t$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>s</mi>\\n <mo>,</mo>\\n <mi>t</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <mo>∉</mo>\\n <mrow>\\n <mo>{</mo>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mn>2</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <mo>,</mo>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mn>3</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(s,t)\\\\notin \\\\{(2,2),(2,3)\\\\}$</annotation>\\n </semantics></math> and each odd cycle has length at least five.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一个图,图兰数是无顶点图中可能存在的最大边数。图的图兰数研究是极值图理论的核心课题。尽管著名的厄尔多斯-斯通-西蒙诺维茨定理给出了非双方形图的图兰数的渐近值,但在一般情况下,要确定图兰数的精确值是很有挑战性的。奇循环图是这样一种图:图的每条边都被奇循环所替代,且所有奇循环的新顶点都是不同的。这里奇数循环的长度不一定相等。在本文中,我们设法得到了奇数循环图的图兰数的精确值,其中 , , 每个奇数循环的长度至少为 5。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Turán number of the odd-ballooning of complete bipartite graphs

Given a graph L $L$ , the Turán number ex ( n , L ) $\text{ex}(n,L)$ is the maximum possible number of edges in an n $n$ -vertex L $L$ -free graph. The study of Turán number of graphs is a central topic in extremal graph theory. Although the celebrated Erdős-Stone-Simonovits theorem gives the asymptotic value of ex ( n , L ) $\text{ex}(n,L)$ for nonbipartite L $L$ , it is challenging in general to determine the exact value of ex ( n , L ) $\text{ex}(n,L)$ for χ ( L ) 3 $\chi (L)\ge 3$ . The odd-ballooning of H $H$ is a graph such that each edge of H $H$ is replaced by an odd cycle and all new vertices of odd cycles are distinct. Here the length of odd cycles is not necessarily equal. The exact value of Turán number of the odd-ballooning of H $H$ is previously known for H $H$ being a cycle, a path, a tree with assumptions, and K 2 , 3 ${K}_{2,3}$ . In this paper, we manage to obtain the exact value of Turán number of the odd-ballooning of K s , t ${K}_{s,t}$ with 2 s t $2\le s\le t$ , where ( s , t ) { ( 2 , 2 ) , ( 2 , 3 ) } $(s,t)\notin \{(2,2),(2,3)\}$ and each odd cycle has length at least five.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信