Kuo Sun, Shao-Hua Luo, Ningyuan Du, Yu Wei, Shengxue Yan
{"title":"磷酸锰铁锂正极材料的研究进展:从制备到改性","authors":"Kuo Sun, Shao-Hua Luo, Ningyuan Du, Yu Wei, Shengxue Yan","doi":"10.1002/elan.202400120","DOIUrl":null,"url":null,"abstract":"<p>LiFePO<sub>4</sub> is very promising for application in the field of power batteries due to its high specific capacity (170 mAh<sup>−1</sup>), stable structure, safety, low price, and environmental friendliness. However, it is well known that the slow electron transport and Li<sup>+</sup> transport of LiFePO<sub>4</sub> results in a rate performance that is far below the requirements for small batteries, resulting in a low LiFePO<sub>4</sub> energy density. In order to solve this problem, LiMn<sub>1−x</sub>Fe<sub>x</sub>PO<sub>4</sub> (LMFP) cathode material was synthesized by combining Fe and Mn in a certain ratio, and its material properties were improved. Here, we provide a detailed review of LiMn<sub>1−x</sub>Fe<sub>x</sub>PO<sub>4</sub> anode material preparation. In addition, this review focuses on the preparation of LiMn<sub>1−x</sub>Fe<sub>x</sub>PO<sub>4</sub> and several modification methods to compensate for the inherent deficiencies of certain materials, as well as predicting their future trends.</p>","PeriodicalId":162,"journal":{"name":"Electroanalysis","volume":"36 8","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research progress of lithium manganese iron phosphate cathode materials: From preparation to modification\",\"authors\":\"Kuo Sun, Shao-Hua Luo, Ningyuan Du, Yu Wei, Shengxue Yan\",\"doi\":\"10.1002/elan.202400120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>LiFePO<sub>4</sub> is very promising for application in the field of power batteries due to its high specific capacity (170 mAh<sup>−1</sup>), stable structure, safety, low price, and environmental friendliness. However, it is well known that the slow electron transport and Li<sup>+</sup> transport of LiFePO<sub>4</sub> results in a rate performance that is far below the requirements for small batteries, resulting in a low LiFePO<sub>4</sub> energy density. In order to solve this problem, LiMn<sub>1−x</sub>Fe<sub>x</sub>PO<sub>4</sub> (LMFP) cathode material was synthesized by combining Fe and Mn in a certain ratio, and its material properties were improved. Here, we provide a detailed review of LiMn<sub>1−x</sub>Fe<sub>x</sub>PO<sub>4</sub> anode material preparation. In addition, this review focuses on the preparation of LiMn<sub>1−x</sub>Fe<sub>x</sub>PO<sub>4</sub> and several modification methods to compensate for the inherent deficiencies of certain materials, as well as predicting their future trends.</p>\",\"PeriodicalId\":162,\"journal\":{\"name\":\"Electroanalysis\",\"volume\":\"36 8\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electroanalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/elan.202400120\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electroanalysis","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elan.202400120","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Research progress of lithium manganese iron phosphate cathode materials: From preparation to modification
LiFePO4 is very promising for application in the field of power batteries due to its high specific capacity (170 mAh−1), stable structure, safety, low price, and environmental friendliness. However, it is well known that the slow electron transport and Li+ transport of LiFePO4 results in a rate performance that is far below the requirements for small batteries, resulting in a low LiFePO4 energy density. In order to solve this problem, LiMn1−xFexPO4 (LMFP) cathode material was synthesized by combining Fe and Mn in a certain ratio, and its material properties were improved. Here, we provide a detailed review of LiMn1−xFexPO4 anode material preparation. In addition, this review focuses on the preparation of LiMn1−xFexPO4 and several modification methods to compensate for the inherent deficiencies of certain materials, as well as predicting their future trends.
期刊介绍:
Electroanalysis is an international, peer-reviewed journal covering all branches of electroanalytical chemistry, including both fundamental and application papers as well as reviews dealing with new electrochemical sensors and biosensors, nanobioelectronics devices, analytical voltammetry, potentiometry, new electrochemical detection schemes based on novel nanomaterials, fuel cells and biofuel cells, and important practical applications.
Serving as a vital communication link between the research labs and the field, Electroanalysis helps you to quickly adapt the latest innovations into practical clinical, environmental, food analysis, industrial and energy-related applications. Electroanalysis provides the most comprehensive coverage of the field and is the number one source for information on electroanalytical chemistry, electrochemical sensors and biosensors and fuel/biofuel cells.