{"title":"大翼展拍翼飞行器滚转控制策略的设计与实验验证","authors":"Rui Meng, Bifeng Song, Jianlin Xuan, Xiaojun Yang, Dong Xue","doi":"10.1007/s42235-024-00532-4","DOIUrl":null,"url":null,"abstract":"<div><p>Most flapping-wing aircraft wings use a single degree of freedom to generate lift and thrust by flapping up and down, while relying on the tail control surfaces to manage attitude. However, these aircraft have certain limitations, such as poor accuracy in attitude control and inadequate roll control capabilities. This paper presents a design for an active torsional mechanism at the wing's trailing edge, which enables differential variations in the pitch angle of the left and right wings during flapping. This simple mechanical form significantly enhances the aircraft's roll control capacity. The experimental verification of this mechanism was conducted in a wind tunnel using the RoboEagle flapping-wing aerial vehicle that we developed. The study investigated the effects of the control strategy on lift, thrust, and roll moment during flapping flight. Additionally, the impact of roll control on roll moment was examined under various wind speeds, flapping frequencies, angles of attack, and wing flexibility. Furthermore, several rolling maneuver flight tests were performed to evaluate the agility of RoboEagle, utilizing both the elevon control strategy and the new roll control strategy. The results demonstrated that the new roll control strategy effectively enhances the roll control capability, thereby improving the attitude control capabilities of the flapping-wing aircraft in complex wind field environments. This conclusion is supported by a comparison of the control time, maximum roll angle, average roll angular velocity, and other relevant parameters between the two control strategies under identical roll control input.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 4","pages":"1644 - 1661"},"PeriodicalIF":4.9000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Experimental Verification of a Roll Control Strategy for Large Wingspan Flapping-Wing Aerial Vehicle\",\"authors\":\"Rui Meng, Bifeng Song, Jianlin Xuan, Xiaojun Yang, Dong Xue\",\"doi\":\"10.1007/s42235-024-00532-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Most flapping-wing aircraft wings use a single degree of freedom to generate lift and thrust by flapping up and down, while relying on the tail control surfaces to manage attitude. However, these aircraft have certain limitations, such as poor accuracy in attitude control and inadequate roll control capabilities. This paper presents a design for an active torsional mechanism at the wing's trailing edge, which enables differential variations in the pitch angle of the left and right wings during flapping. This simple mechanical form significantly enhances the aircraft's roll control capacity. The experimental verification of this mechanism was conducted in a wind tunnel using the RoboEagle flapping-wing aerial vehicle that we developed. The study investigated the effects of the control strategy on lift, thrust, and roll moment during flapping flight. Additionally, the impact of roll control on roll moment was examined under various wind speeds, flapping frequencies, angles of attack, and wing flexibility. Furthermore, several rolling maneuver flight tests were performed to evaluate the agility of RoboEagle, utilizing both the elevon control strategy and the new roll control strategy. The results demonstrated that the new roll control strategy effectively enhances the roll control capability, thereby improving the attitude control capabilities of the flapping-wing aircraft in complex wind field environments. This conclusion is supported by a comparison of the control time, maximum roll angle, average roll angular velocity, and other relevant parameters between the two control strategies under identical roll control input.</p></div>\",\"PeriodicalId\":614,\"journal\":{\"name\":\"Journal of Bionic Engineering\",\"volume\":\"21 4\",\"pages\":\"1644 - 1661\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bionic Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42235-024-00532-4\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00532-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Design and Experimental Verification of a Roll Control Strategy for Large Wingspan Flapping-Wing Aerial Vehicle
Most flapping-wing aircraft wings use a single degree of freedom to generate lift and thrust by flapping up and down, while relying on the tail control surfaces to manage attitude. However, these aircraft have certain limitations, such as poor accuracy in attitude control and inadequate roll control capabilities. This paper presents a design for an active torsional mechanism at the wing's trailing edge, which enables differential variations in the pitch angle of the left and right wings during flapping. This simple mechanical form significantly enhances the aircraft's roll control capacity. The experimental verification of this mechanism was conducted in a wind tunnel using the RoboEagle flapping-wing aerial vehicle that we developed. The study investigated the effects of the control strategy on lift, thrust, and roll moment during flapping flight. Additionally, the impact of roll control on roll moment was examined under various wind speeds, flapping frequencies, angles of attack, and wing flexibility. Furthermore, several rolling maneuver flight tests were performed to evaluate the agility of RoboEagle, utilizing both the elevon control strategy and the new roll control strategy. The results demonstrated that the new roll control strategy effectively enhances the roll control capability, thereby improving the attitude control capabilities of the flapping-wing aircraft in complex wind field environments. This conclusion is supported by a comparison of the control time, maximum roll angle, average roll angular velocity, and other relevant parameters between the two control strategies under identical roll control input.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.