非平衡电对流的长时间动力学

IF 1.2 2区 数学 Q1 MATHEMATICS
Fizay-Noah Lee
{"title":"非平衡电对流的长时间动力学","authors":"Fizay-Noah Lee","doi":"10.1090/tran/9171","DOIUrl":null,"url":null,"abstract":"<p>The Nernst-Planck-Stokes (NPS) system models electroconvection of ions in a fluid. We consider the system, for two oppositely charged ionic species, on three dimensional bounded domains with Dirichlet boundary conditions for the ionic concentrations (modelling ion selectivity), Dirichlet boundary conditions for the electrical potential (modelling an applied potential), and no-slip boundary conditions for the fluid velocity. In this paper, we obtain quantitative bounds on solutions of the NPS system in the long time limit, which we use to prove (1) the existence of a compact global attractor with finite fractal (box-counting) dimension and (2) space-time averaged electroneutrality <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"rho almost-equals 0\"> <mml:semantics> <mml:mrow> <mml:mi>ρ</mml:mi> <mml:mo>≈</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\rho \\approx 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the singular limit of Debye length going to zero, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon right-arrow 0\"> <mml:semantics> <mml:mrow> <mml:mi>ϵ</mml:mi> <mml:mo stretchy=\"false\">→</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\epsilon \\to 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long time dynamics of nonequilibrium electroconvection\",\"authors\":\"Fizay-Noah Lee\",\"doi\":\"10.1090/tran/9171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Nernst-Planck-Stokes (NPS) system models electroconvection of ions in a fluid. We consider the system, for two oppositely charged ionic species, on three dimensional bounded domains with Dirichlet boundary conditions for the ionic concentrations (modelling ion selectivity), Dirichlet boundary conditions for the electrical potential (modelling an applied potential), and no-slip boundary conditions for the fluid velocity. In this paper, we obtain quantitative bounds on solutions of the NPS system in the long time limit, which we use to prove (1) the existence of a compact global attractor with finite fractal (box-counting) dimension and (2) space-time averaged electroneutrality <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"rho almost-equals 0\\\"> <mml:semantics> <mml:mrow> <mml:mi>ρ</mml:mi> <mml:mo>≈</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\rho \\\\approx 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the singular limit of Debye length going to zero, <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"epsilon right-arrow 0\\\"> <mml:semantics> <mml:mrow> <mml:mi>ϵ</mml:mi> <mml:mo stretchy=\\\"false\\\">→</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\epsilon \\\\to 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>\",\"PeriodicalId\":23209,\"journal\":{\"name\":\"Transactions of the American Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/9171\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9171","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

内斯特-普朗克-斯托克斯(NPS)系统是流体中离子电对流的模型。我们考虑的是两个带相反电荷的离子物种在三维有界域上的系统,离子浓度的边界条件为狄里希勒(Dirichlet)(模拟离子选择性),电势的边界条件为狄里希勒(Dirichlet)(模拟外加电势),流体速度的边界条件为无滑动(no-slip)。在本文中,我们获得了 NPS 系统解在长时限内的定量边界,并利用这些边界证明了:(1)存在具有有限分形(盒数)维度的紧凑全局吸引子;(2)在德拜长度为零的奇异极限内,ϵ → 0 \epsilon \to 0 的时空平均电中性 ρ ≈ 0 \rho \approx 0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long time dynamics of nonequilibrium electroconvection

The Nernst-Planck-Stokes (NPS) system models electroconvection of ions in a fluid. We consider the system, for two oppositely charged ionic species, on three dimensional bounded domains with Dirichlet boundary conditions for the ionic concentrations (modelling ion selectivity), Dirichlet boundary conditions for the electrical potential (modelling an applied potential), and no-slip boundary conditions for the fluid velocity. In this paper, we obtain quantitative bounds on solutions of the NPS system in the long time limit, which we use to prove (1) the existence of a compact global attractor with finite fractal (box-counting) dimension and (2) space-time averaged electroneutrality ρ 0 \rho \approx 0 in the singular limit of Debye length going to zero, ϵ 0 \epsilon \to 0 .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.70%
发文量
171
审稿时长
3-6 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信