求助PDF
{"title":"关于双积的岩泽主猜想","authors":"Daniel Delbourgo","doi":"10.1090/tran/9169","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma\"> <mml:semantics> <mml:mi>σ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau\"> <mml:semantics> <mml:mi>τ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote a pair of absolutely irreducible <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-ordinary and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-distinguished Galois representations into <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G upper L 2 left-parenthesis double-struck upper F overbar Subscript p Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>GL</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mover> <mml:mrow> <mml:mi mathvariant=\"double-struck\">F</mml:mi> </mml:mrow> <mml:mo accent=\"false\">¯</mml:mo> </mml:mover> <mml:mi>p</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\operatorname {GL}_2(\\overline {\\mathbb {F}}_p)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Given two primitive forms <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis f comma g right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>,</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(f,g)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"w t left-parenthesis f right-parenthesis greater-than w t left-parenthesis g right-parenthesis greater-than 1\"> <mml:semantics> <mml:mrow> <mml:mi>wt</mml:mi> <mml:mo></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>></mml:mo> <mml:mi>wt</mml:mi> <mml:mo></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\operatorname {wt}(f)>\\operatorname {wt}(g)> 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"rho overbar Subscript f Baseline approximately-equals sigma\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mover> <mml:mi>ρ</mml:mi> <mml:mo accent=\"false\">¯</mml:mo> </mml:mover> <mml:mi>f</mml:mi> </mml:msub> <mml:mo>≅</mml:mo> <mml:mi>σ</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\overline {\\rho }_f\\cong \\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"rho overbar Subscript g Baseline approximately-equals tau\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mover> <mml:mi>ρ</mml:mi> <mml:mo accent=\"false\">¯</mml:mo> </mml:mover> <mml:mi>g</mml:mi> </mml:msub> <mml:mo>≅</mml:mo> <mml:mi>τ</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\overline {\\rho }_g\\cong \\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we show that the Iwasawa Main Conjecture for the double product <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"rho Subscript f Baseline circled-times rho Subscript g\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>ρ</mml:mi> <mml:mi>f</mml:mi> </mml:msub> <mml:mo>⊗</mml:mo> <mml:msub> <mml:mi>ρ</mml:mi> <mml:mi>g</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\rho _f\\otimes \\rho _g</mml:annotation> </mml:semantics> </mml:math> </inline-formula> depends only on the residual Galois representation <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma circled-times tau colon upper G Subscript double-struck upper Q Baseline right-arrow upper G upper L 4 left-parenthesis double-struck upper F overbar Subscript p Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>σ</mml:mi> <mml:mo>⊗</mml:mo> <mml:mi>τ</mml:mi> <mml:mo>:</mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">→</mml:mo> <mml:msub> <mml:mi>GL</mml:mi> <mml:mn>4</mml:mn> </mml:msub> <mml:mo></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mover> <mml:mrow> <mml:mi mathvariant=\"double-struck\">F</mml:mi> </mml:mrow> <mml:mo accent=\"false\">¯</mml:mo> </mml:mover> <mml:mi>p</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\sigma \\otimes \\tau : G_{\\mathbb {Q}}\\rightarrow \\operatorname {GL}_4(\\overline {\\mathbb {F}}_p)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. More precisely, if IMC(<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f circled-times g\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>⊗</mml:mo> <mml:mi>g</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">f\\otimes g</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) is true for one pair <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis f comma g right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>,</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(f,g)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"rho overbar Subscript f Baseline approximately-equals sigma\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mover> <mml:mi>ρ</mml:mi> <mml:mo accent=\"false\">¯</mml:mo> </mml:mover> <mml:mi>f</mml:mi> </mml:msub> <mml:mo>≅</mml:mo> <mml:mi>σ</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\overline {\\rho }_f \\cong \\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"rho overbar Subscript g Baseline approximately-equals tau\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mover> <mml:mi>ρ</mml:mi> <mml:mo accent=\"false\">¯</mml:mo> </mml:mover> <mml:mi>g</mml:mi> </mml:msub> <mml:mo>≅</mml:mo> <mml:mi>τ</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\overline {\\rho }_g\\cong \\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and whose <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu\"> <mml:semantics> <mml:mi>μ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-invariant equals zero, then it is true for every congruent pair too.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Iwasawa main conjecture for the double product\",\"authors\":\"Daniel Delbourgo\",\"doi\":\"10.1090/tran/9169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sigma\\\"> <mml:semantics> <mml:mi>σ</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"tau\\\"> <mml:semantics> <mml:mi>τ</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote a pair of absolutely irreducible <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-ordinary and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-distinguished Galois representations into <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G upper L 2 left-parenthesis double-struck upper F overbar Subscript p Baseline right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>GL</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo></mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msub> <mml:mover> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">F</mml:mi> </mml:mrow> <mml:mo accent=\\\"false\\\">¯</mml:mo> </mml:mover> <mml:mi>p</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\operatorname {GL}_2(\\\\overline {\\\\mathbb {F}}_p)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Given two primitive forms <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis f comma g right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>,</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(f,g)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"w t left-parenthesis f right-parenthesis greater-than w t left-parenthesis g right-parenthesis greater-than 1\\\"> <mml:semantics> <mml:mrow> <mml:mi>wt</mml:mi> <mml:mo></mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>></mml:mo> <mml:mi>wt</mml:mi> <mml:mo></mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\operatorname {wt}(f)>\\\\operatorname {wt}(g)> 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"rho overbar Subscript f Baseline approximately-equals sigma\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mover> <mml:mi>ρ</mml:mi> <mml:mo accent=\\\"false\\\">¯</mml:mo> </mml:mover> <mml:mi>f</mml:mi> </mml:msub> <mml:mo>≅</mml:mo> <mml:mi>σ</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\overline {\\\\rho }_f\\\\cong \\\\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"rho overbar Subscript g Baseline approximately-equals tau\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mover> <mml:mi>ρ</mml:mi> <mml:mo accent=\\\"false\\\">¯</mml:mo> </mml:mover> <mml:mi>g</mml:mi> </mml:msub> <mml:mo>≅</mml:mo> <mml:mi>τ</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\overline {\\\\rho }_g\\\\cong \\\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we show that the Iwasawa Main Conjecture for the double product <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"rho Subscript f Baseline circled-times rho Subscript g\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>ρ</mml:mi> <mml:mi>f</mml:mi> </mml:msub> <mml:mo>⊗</mml:mo> <mml:msub> <mml:mi>ρ</mml:mi> <mml:mi>g</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\rho _f\\\\otimes \\\\rho _g</mml:annotation> </mml:semantics> </mml:math> </inline-formula> depends only on the residual Galois representation <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sigma circled-times tau colon upper G Subscript double-struck upper Q Baseline right-arrow upper G upper L 4 left-parenthesis double-struck upper F overbar Subscript p Baseline right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>σ</mml:mi> <mml:mo>⊗</mml:mo> <mml:mi>τ</mml:mi> <mml:mo>:</mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">Q</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> <mml:mo stretchy=\\\"false\\\">→</mml:mo> <mml:msub> <mml:mi>GL</mml:mi> <mml:mn>4</mml:mn> </mml:msub> <mml:mo></mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msub> <mml:mover> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">F</mml:mi> </mml:mrow> <mml:mo accent=\\\"false\\\">¯</mml:mo> </mml:mover> <mml:mi>p</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\sigma \\\\otimes \\\\tau : G_{\\\\mathbb {Q}}\\\\rightarrow \\\\operatorname {GL}_4(\\\\overline {\\\\mathbb {F}}_p)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. More precisely, if IMC(<inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"f circled-times g\\\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>⊗</mml:mo> <mml:mi>g</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">f\\\\otimes g</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) is true for one pair <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis f comma g right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>,</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(f,g)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"rho overbar Subscript f Baseline approximately-equals sigma\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mover> <mml:mi>ρ</mml:mi> <mml:mo accent=\\\"false\\\">¯</mml:mo> </mml:mover> <mml:mi>f</mml:mi> </mml:msub> <mml:mo>≅</mml:mo> <mml:mi>σ</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\overline {\\\\rho }_f \\\\cong \\\\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"rho overbar Subscript g Baseline approximately-equals tau\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mover> <mml:mi>ρ</mml:mi> <mml:mo accent=\\\"false\\\">¯</mml:mo> </mml:mover> <mml:mi>g</mml:mi> </mml:msub> <mml:mo>≅</mml:mo> <mml:mi>τ</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\overline {\\\\rho }_g\\\\cong \\\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and whose <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"mu\\\"> <mml:semantics> <mml:mi>μ</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-invariant equals zero, then it is true for every congruent pair too.</p>\",\"PeriodicalId\":23209,\"journal\":{\"name\":\"Transactions of the American Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/9169\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9169","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用