{"title":"沃伊塔一般abc猜想的复杂情况和坎帕纳球面猜想的情况","authors":"Ji Guo, Julie Wang","doi":"10.1090/tran/9175","DOIUrl":null,"url":null,"abstract":"<p>We show a truncated second main theorem of level one with explicit exceptional sets for analytic maps into <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P squared\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb P^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> intersecting the coordinate lines with sufficiently high multiplicities. The proof is based on a greatest common divisor theorem for an analytic map <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f colon double-struck upper C right-arrow from bar double-struck upper P Superscript n\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>:</mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">C</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">↦</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">f:\\mathbb C\\mapsto \\mathbb P^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and two homogeneous polynomials in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n plus 1\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">n+1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> variables with coefficients which are meromorphic functions of the same growth as the analytic map <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding=\"application/x-tex\">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. As applications, we study some cases of Campana’s orbifold conjecture for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P squared\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb P^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and finite ramified covers of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P squared\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb P^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with three components admitting sufficiently large multiplicities. In addition, we explicitly determine the exceptional sets. Consequently, it implies the strong Green-Griffiths-Lang conjecture for finite ramified covers of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper G Subscript m Superscript 2\"> <mml:semantics> <mml:msubsup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">G</mml:mi> </mml:mrow> <mml:mi>m</mml:mi> <mml:mn>2</mml:mn> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">\\mathbb G_m^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A complex case of Vojta’s general abc conjecture and cases of Campana’s orbifold conjecture\",\"authors\":\"Ji Guo, Julie Wang\",\"doi\":\"10.1090/tran/9175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show a truncated second main theorem of level one with explicit exceptional sets for analytic maps into <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper P squared\\\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb P^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> intersecting the coordinate lines with sufficiently high multiplicities. The proof is based on a greatest common divisor theorem for an analytic map <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"f colon double-struck upper C right-arrow from bar double-struck upper P Superscript n\\\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>:</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">C</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">↦</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">f:\\\\mathbb C\\\\mapsto \\\\mathbb P^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and two homogeneous polynomials in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n plus 1\\\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">n+1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> variables with coefficients which are meromorphic functions of the same growth as the analytic map <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"f\\\"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. As applications, we study some cases of Campana’s orbifold conjecture for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper P squared\\\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb P^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and finite ramified covers of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper P squared\\\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb P^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with three components admitting sufficiently large multiplicities. In addition, we explicitly determine the exceptional sets. Consequently, it implies the strong Green-Griffiths-Lang conjecture for finite ramified covers of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper G Subscript m Superscript 2\\\"> <mml:semantics> <mml:msubsup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">G</mml:mi> </mml:mrow> <mml:mi>m</mml:mi> <mml:mn>2</mml:mn> </mml:msubsup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb G_m^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>\",\"PeriodicalId\":23209,\"journal\":{\"name\":\"Transactions of the American Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/9175\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9175","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们展示了一个截断的第一级第二主定理,它为进入 P 2 \mathbb P^2 并与坐标线以足够高的乘数相交的解析映射提供了明确的例外集。证明基于一个解析图 f : C ↦ P n f:\mathbb C\mapsto \mathbb P^n 的最大公因子定理,以及两个 n + 1 n + 1 变量中的同次多项式,其系数与解析图 f f 的增长相同,都是分形函数。作为应用,我们研究了 P 2 \mathbb P^2 和 P 2 \mathbb P^2 的有限斜面盖的坎帕纳球面猜想的一些情况,其中 P 2 \mathbb P^2 有三个分量允许足够大的乘数。此外,我们还明确地确定了例外集。因此,这意味着 G m 2 \mathbb G_m^2 的有限斜切盖的强格林-格里菲斯-朗猜想。
A complex case of Vojta’s general abc conjecture and cases of Campana’s orbifold conjecture
We show a truncated second main theorem of level one with explicit exceptional sets for analytic maps into P2\mathbb P^2 intersecting the coordinate lines with sufficiently high multiplicities. The proof is based on a greatest common divisor theorem for an analytic map f:C↦Pnf:\mathbb C\mapsto \mathbb P^n and two homogeneous polynomials in n+1n+1 variables with coefficients which are meromorphic functions of the same growth as the analytic map ff. As applications, we study some cases of Campana’s orbifold conjecture for P2\mathbb P^2 and finite ramified covers of P2\mathbb P^2 with three components admitting sufficiently large multiplicities. In addition, we explicitly determine the exceptional sets. Consequently, it implies the strong Green-Griffiths-Lang conjecture for finite ramified covers of Gm2\mathbb G_m^2.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.