大心形层次结构的结构反映模式

IF 1.2 2区 数学 Q1 MATHEMATICS
Joan Bagaria, Philipp Lücke
{"title":"大心形层次结构的结构反映模式","authors":"Joan Bagaria, Philipp Lücke","doi":"10.1090/tran/9120","DOIUrl":null,"url":null,"abstract":"<p>We unveil new patterns of Structural Reflection in the large-cardinal hierarchy below the first measurable cardinal. Namely, we give two different characterizations of strongly unfoldable and subtle cardinals in terms of a weak form of the principle of Structural Reflection, and also in terms of weak product structural reflection. Our analysis prompts the introduction of the new notion of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript left-parenthesis n right-parenthesis\"> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">C^{(n)}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-strongly unfoldable cardinal for every natural number <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and we show that these cardinals form a natural hierarchy between strong unfoldable and subtle cardinals analogous to the known hierarchies of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript left-parenthesis n right-parenthesis\"> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">C^{(n)}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-extendible and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Sigma Subscript n\"> <mml:semantics> <mml:msub> <mml:mi mathvariant=\"normal\">Σ<!-- Σ --></mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\Sigma _n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-strong cardinals. These results show that the relatively low region of the large-cardinal hierarchy comprised between the first strongly unfoldable and the first subtle cardinals is completely analogous to the much higher region between the first strong and the first Woodin cardinals, and also to the much further upper region of the hierarchy ranging between the first supercompact and the first Vopěnka cardinals.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Patterns of structural reflection in the large-cardinal hierarchy\",\"authors\":\"Joan Bagaria, Philipp Lücke\",\"doi\":\"10.1090/tran/9120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We unveil new patterns of Structural Reflection in the large-cardinal hierarchy below the first measurable cardinal. Namely, we give two different characterizations of strongly unfoldable and subtle cardinals in terms of a weak form of the principle of Structural Reflection, and also in terms of weak product structural reflection. Our analysis prompts the introduction of the new notion of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript left-parenthesis n right-parenthesis\\\"> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">C^{(n)}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-strongly unfoldable cardinal for every natural number <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n\\\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and we show that these cardinals form a natural hierarchy between strong unfoldable and subtle cardinals analogous to the known hierarchies of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript left-parenthesis n right-parenthesis\\\"> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">C^{(n)}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-extendible and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Sigma Subscript n\\\"> <mml:semantics> <mml:msub> <mml:mi mathvariant=\\\"normal\\\">Σ<!-- Σ --></mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Sigma _n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-strong cardinals. These results show that the relatively low region of the large-cardinal hierarchy comprised between the first strongly unfoldable and the first subtle cardinals is completely analogous to the much higher region between the first strong and the first Woodin cardinals, and also to the much further upper region of the hierarchy ranging between the first supercompact and the first Vopěnka cardinals.</p>\",\"PeriodicalId\":23209,\"journal\":{\"name\":\"Transactions of the American Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/9120\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9120","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们揭示了第一个可测红心以下大红心层次中结构反射的新模式。也就是说,我们根据结构反射原理的弱形式,以及弱积结构反射,给出了强可展开和微妙红心的两种不同特征。我们的分析促使我们为每一个自然数 n n 引入了 C ( n ) C^{(n)} -强可展开红心的新概念,并且我们证明了这些红心在强可展开红心和微妙红心之间形成了一个自然的等级体系,类似于已知的 C ( n ) C^{(n)} -可展开红心和 Σ n \Sigma _n -强红心的等级体系。这些结果表明,大红心层次结构中介于第一个强可展开红心和第一个微妙红心之间的相对较低区域,完全类似于介于第一个强红心和第一个伍丁红心之间的更高区域,也类似于介于第一个超紧密红心和第一个沃潘卡红心之间的更高区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Patterns of structural reflection in the large-cardinal hierarchy

We unveil new patterns of Structural Reflection in the large-cardinal hierarchy below the first measurable cardinal. Namely, we give two different characterizations of strongly unfoldable and subtle cardinals in terms of a weak form of the principle of Structural Reflection, and also in terms of weak product structural reflection. Our analysis prompts the introduction of the new notion of C ( n ) C^{(n)} -strongly unfoldable cardinal for every natural number n n , and we show that these cardinals form a natural hierarchy between strong unfoldable and subtle cardinals analogous to the known hierarchies of C ( n ) C^{(n)} -extendible and Σ n \Sigma _n -strong cardinals. These results show that the relatively low region of the large-cardinal hierarchy comprised between the first strongly unfoldable and the first subtle cardinals is completely analogous to the much higher region between the first strong and the first Woodin cardinals, and also to the much further upper region of the hierarchy ranging between the first supercompact and the first Vopěnka cardinals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.70%
发文量
171
审稿时长
3-6 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信