{"title":"超椭圆𝐴ᵣ稳定曲线(及其模数堆栈)","authors":"Michele Pernice","doi":"10.1090/tran/9164","DOIUrl":null,"url":null,"abstract":"<p>This paper is the second in a series of four papers aiming to describe the (almost integral) Chow ring of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper M overbar Subscript 3\"> <mml:semantics> <mml:msub> <mml:mover> <mml:mrow> <mml:mi mathvariant=\"script\">M</mml:mi> </mml:mrow> <mml:mo accent=\"false\">¯<!-- ¯ --></mml:mo> </mml:mover> <mml:mn>3</mml:mn> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\overline {\\mathcal {M}}_3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the moduli stack of stable curves of genus <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\"application/x-tex\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this paper, we introduce the moduli stack <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper H overTilde Subscript g Superscript r\"> <mml:semantics> <mml:msubsup> <mml:mrow> <mml:mover> <mml:mrow> <mml:mi mathvariant=\"script\">H</mml:mi> </mml:mrow> <mml:mo>~<!-- ~ --></mml:mo> </mml:mover> </mml:mrow> <mml:mi>g</mml:mi> <mml:mi>r</mml:mi> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">\\widetilde {\\mathcal {H}}_g^r</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of hyperelliptic <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A Subscript r\"> <mml:semantics> <mml:msub> <mml:mi>A</mml:mi> <mml:mi>r</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">A_r</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-stable curves and generalize the theory of hyperelliptic stable curves to hyperelliptic <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A Subscript r\"> <mml:semantics> <mml:msub> <mml:mi>A</mml:mi> <mml:mi>r</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">A_r</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-stable curves. In particular, we prove that <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper H overTilde Subscript g Superscript r\"> <mml:semantics> <mml:msubsup> <mml:mrow> <mml:mover> <mml:mrow> <mml:mi mathvariant=\"script\">H</mml:mi> </mml:mrow> <mml:mo>~<!-- ~ --></mml:mo> </mml:mover> </mml:mrow> <mml:mi>g</mml:mi> <mml:mi>r</mml:mi> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">\\widetilde {\\mathcal {H}}_g^r</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a smooth algebraic stack that can be described using cyclic covers of twisted curves of genus <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0\"> <mml:semantics> <mml:mn>0</mml:mn> <mml:annotation encoding=\"application/x-tex\">0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and it embeds in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper M overTilde Subscript g Superscript r\"> <mml:semantics> <mml:msubsup> <mml:mrow> <mml:mover> <mml:mrow> <mml:mi mathvariant=\"script\">M</mml:mi> </mml:mrow> <mml:mo>~<!-- ~ --></mml:mo> </mml:mover> </mml:mrow> <mml:mi>g</mml:mi> <mml:mi>r</mml:mi> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">\\widetilde {\\mathcal M}_g^r</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (the moduli stack of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A Subscript r\"> <mml:semantics> <mml:msub> <mml:mi>A</mml:mi> <mml:mi>r</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">A_r</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-stable curves) as the closure of the moduli stack of smooth hyperelliptic curves.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperelliptic 𝐴ᵣ-stable curves (and their moduli stack)\",\"authors\":\"Michele Pernice\",\"doi\":\"10.1090/tran/9164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is the second in a series of four papers aiming to describe the (almost integral) Chow ring of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper M overbar Subscript 3\\\"> <mml:semantics> <mml:msub> <mml:mover> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">M</mml:mi> </mml:mrow> <mml:mo accent=\\\"false\\\">¯<!-- ¯ --></mml:mo> </mml:mover> <mml:mn>3</mml:mn> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\overline {\\\\mathcal {M}}_3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the moduli stack of stable curves of genus <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"3\\\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this paper, we introduce the moduli stack <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper H overTilde Subscript g Superscript r\\\"> <mml:semantics> <mml:msubsup> <mml:mrow> <mml:mover> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">H</mml:mi> </mml:mrow> <mml:mo>~<!-- ~ --></mml:mo> </mml:mover> </mml:mrow> <mml:mi>g</mml:mi> <mml:mi>r</mml:mi> </mml:msubsup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\widetilde {\\\\mathcal {H}}_g^r</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of hyperelliptic <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A Subscript r\\\"> <mml:semantics> <mml:msub> <mml:mi>A</mml:mi> <mml:mi>r</mml:mi> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">A_r</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-stable curves and generalize the theory of hyperelliptic stable curves to hyperelliptic <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A Subscript r\\\"> <mml:semantics> <mml:msub> <mml:mi>A</mml:mi> <mml:mi>r</mml:mi> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">A_r</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-stable curves. In particular, we prove that <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper H overTilde Subscript g Superscript r\\\"> <mml:semantics> <mml:msubsup> <mml:mrow> <mml:mover> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">H</mml:mi> </mml:mrow> <mml:mo>~<!-- ~ --></mml:mo> </mml:mover> </mml:mrow> <mml:mi>g</mml:mi> <mml:mi>r</mml:mi> </mml:msubsup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\widetilde {\\\\mathcal {H}}_g^r</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a smooth algebraic stack that can be described using cyclic covers of twisted curves of genus <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"0\\\"> <mml:semantics> <mml:mn>0</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and it embeds in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper M overTilde Subscript g Superscript r\\\"> <mml:semantics> <mml:msubsup> <mml:mrow> <mml:mover> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">M</mml:mi> </mml:mrow> <mml:mo>~<!-- ~ --></mml:mo> </mml:mover> </mml:mrow> <mml:mi>g</mml:mi> <mml:mi>r</mml:mi> </mml:msubsup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\widetilde {\\\\mathcal M}_g^r</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (the moduli stack of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A Subscript r\\\"> <mml:semantics> <mml:msub> <mml:mi>A</mml:mi> <mml:mi>r</mml:mi> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">A_r</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-stable curves) as the closure of the moduli stack of smooth hyperelliptic curves.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/9164\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9164","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本文是一系列四篇论文中的第二篇,旨在描述属 3 3 稳定曲线的模数堆栈 M ¯ 3 \overline {mathcal {M}}_3 的(几乎积分)周环。在本文中,我们引入了超椭圆 A r A_r - 稳定曲线的模数堆栈 H ~ g r \widetilde {\mathcal {H}}_g^r ,并将超椭圆稳定曲线理论推广到超椭圆 A r A_r - 稳定曲线。特别是,我们证明了 H ~ g r \widetilde {\mathcal {H}}_g^r 是一个光滑的代数堆栈,可以用属 0 0 的扭曲曲线的循环盖来描述,并且它嵌入到 M ~ g r \widetilde {\mathcal M}_g^r(A r A_r - 稳定曲线的模数堆栈)中,是光滑超椭圆曲线的模数堆栈的闭包。
Hyperelliptic 𝐴ᵣ-stable curves (and their moduli stack)
This paper is the second in a series of four papers aiming to describe the (almost integral) Chow ring of M¯3\overline {\mathcal {M}}_3, the moduli stack of stable curves of genus 33. In this paper, we introduce the moduli stack H~gr\widetilde {\mathcal {H}}_g^r of hyperelliptic ArA_r-stable curves and generalize the theory of hyperelliptic stable curves to hyperelliptic ArA_r-stable curves. In particular, we prove that H~gr\widetilde {\mathcal {H}}_g^r is a smooth algebraic stack that can be described using cyclic covers of twisted curves of genus 00 and it embeds in M~gr\widetilde {\mathcal M}_g^r (the moduli stack of ArA_r-stable curves) as the closure of the moduli stack of smooth hyperelliptic curves.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.