利用新型生物合成 PVP 改性 Fe2O3/Fe3O4 纳米复合材料增强抗生素降解和抗氧化活性:环境与人类健康的双重解决方案

IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Zarah Alqarni
{"title":"利用新型生物合成 PVP 改性 Fe2O3/Fe3O4 纳米复合材料增强抗生素降解和抗氧化活性:环境与人类健康的双重解决方案","authors":"Zarah Alqarni","doi":"10.1007/s10876-024-02627-8","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents the biosynthesis of a novel polyvinylpyrrolidone (PVP)-modified Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub> nanocomposite (NC) using an <i>olive</i> leaf extract. The synthesized nanocomposites exhibit dual functionality, highlighting enhanced photocatalysis and antioxidant activity, offering promising applications in environmental remediation and therapeutics. The process involves meticulous biosynthesis and PVP-mediated surface modification, confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and UV–vis analysis. Both Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub> NC and Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub>@PVP NC show spherical morphologies with average sizes of 21.7 nm and 30.1 nm, and optical bandgap energies of 1.8 eV and 1.34 eV, respectively. Photocatalytic activity assessments against amoxicillin antibiotic degradation under solar irradiation highlight the superior performance of PVP-modified nanocomposites, achieving an impressive 99% removal efficiency in 50 min compared to 84% for Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub> NC. Kinetic investigations reveal rate constants of 0.021 min<sup>− 1</sup> and 0.0025 min<sup>− 1</sup> for PVP-modified and unmodified nanocomposites, respectively, emphasizing the enhanced degradation rates. Optimization studies showcase the mass-dependent efficiency, with PVP-modified nanocomposites achieving a remarkable 91% removal rate of amoxicillin with a 7.5 mg catalyst. The recycling performance demonstrates sustained efficacy over five consecutive cycles, with only a slight decline from 99 to 97.5%. Moreover, the nanocomposites exhibited significant antioxidant activity, with Total Antioxidant Activity (TAC) values of 5.5 and 6.86 mg GAE/mg sample for Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub> NC and Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub>@PVP NC, respectively. The environmentally synthesized PVP-modified Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub> NC showcases promising dual functionality, making them versatile candidates for efficient pollutant degradation and antioxidant applications in environmental and therapeutic domains.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 6","pages":"1845 - 1860"},"PeriodicalIF":2.7000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Antibiotic Degradation and Antioxidant Activity Using a Novel Biosynthesized PVP-Modified Fe2O3/Fe3O4 Nanocomposite: A Dual Approach to Environmental and Human Health\",\"authors\":\"Zarah Alqarni\",\"doi\":\"10.1007/s10876-024-02627-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents the biosynthesis of a novel polyvinylpyrrolidone (PVP)-modified Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub> nanocomposite (NC) using an <i>olive</i> leaf extract. The synthesized nanocomposites exhibit dual functionality, highlighting enhanced photocatalysis and antioxidant activity, offering promising applications in environmental remediation and therapeutics. The process involves meticulous biosynthesis and PVP-mediated surface modification, confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and UV–vis analysis. Both Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub> NC and Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub>@PVP NC show spherical morphologies with average sizes of 21.7 nm and 30.1 nm, and optical bandgap energies of 1.8 eV and 1.34 eV, respectively. Photocatalytic activity assessments against amoxicillin antibiotic degradation under solar irradiation highlight the superior performance of PVP-modified nanocomposites, achieving an impressive 99% removal efficiency in 50 min compared to 84% for Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub> NC. Kinetic investigations reveal rate constants of 0.021 min<sup>− 1</sup> and 0.0025 min<sup>− 1</sup> for PVP-modified and unmodified nanocomposites, respectively, emphasizing the enhanced degradation rates. Optimization studies showcase the mass-dependent efficiency, with PVP-modified nanocomposites achieving a remarkable 91% removal rate of amoxicillin with a 7.5 mg catalyst. The recycling performance demonstrates sustained efficacy over five consecutive cycles, with only a slight decline from 99 to 97.5%. Moreover, the nanocomposites exhibited significant antioxidant activity, with Total Antioxidant Activity (TAC) values of 5.5 and 6.86 mg GAE/mg sample for Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub> NC and Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub>@PVP NC, respectively. The environmentally synthesized PVP-modified Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub> NC showcases promising dual functionality, making them versatile candidates for efficient pollutant degradation and antioxidant applications in environmental and therapeutic domains.</p></div>\",\"PeriodicalId\":618,\"journal\":{\"name\":\"Journal of Cluster Science\",\"volume\":\"35 6\",\"pages\":\"1845 - 1860\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cluster Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10876-024-02627-8\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-024-02627-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用橄榄叶提取物生物合成了一种新型聚乙烯吡咯烷酮(PVP)修饰的 Fe2O3/Fe3O4 纳米复合材料(NC)。合成的纳米复合材料具有双重功能,突出表现为增强的光催化和抗氧化活性,在环境修复和治疗方面具有广阔的应用前景。这一过程涉及精细的生物合成和 PVP 介导的表面改性,并通过 X 射线衍射(XRD)、透射电子显微镜(TEM)、傅立叶变换红外光谱(FTIR)和紫外可见光分析得到证实。Fe2O3/Fe3O4 NC 和 Fe2O3/Fe3O4@PVP NC 均呈球形,平均尺寸分别为 21.7 nm 和 30.1 nm,光带隙能分别为 1.8 eV 和 1.34 eV。在太阳光照射下进行的阿莫西林抗生素降解光催化活性评估结果表明,PVP 改性纳米复合材料性能优越,50 分钟内的去除率高达 99%,而 Fe2O3/Fe3O4 NC 的去除率仅为 84%。动力学研究显示,PVP 改性纳米复合材料和未改性纳米复合材料的速率常数分别为 0.021 min- 1 和 0.0025 min-1,这表明降解速率得到了提高。优化研究显示了质量依赖性效率,在使用 7.5 毫克催化剂的情况下,PVP 改性纳米复合材料对阿莫西林的去除率高达 91%。循环性能表明,在连续五个循环过程中,其功效一直保持不变,仅从 99% 稍微下降到 97.5%。此外,纳米复合材料还具有显著的抗氧化活性,Fe2O3/Fe3O4 NC 和 Fe2O3/Fe3O4@PVP NC 的总抗氧化活性(TAC)值分别为 5.5 和 6.86 mg GAE/mg。在环境中合成的 PVP 改性 Fe2O3/Fe3O4 NC 具有良好的双重功能,可用于环境和治疗领域的高效污染物降解和抗氧化应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced Antibiotic Degradation and Antioxidant Activity Using a Novel Biosynthesized PVP-Modified Fe2O3/Fe3O4 Nanocomposite: A Dual Approach to Environmental and Human Health

Enhanced Antibiotic Degradation and Antioxidant Activity Using a Novel Biosynthesized PVP-Modified Fe2O3/Fe3O4 Nanocomposite: A Dual Approach to Environmental and Human Health

This study presents the biosynthesis of a novel polyvinylpyrrolidone (PVP)-modified Fe2O3/Fe3O4 nanocomposite (NC) using an olive leaf extract. The synthesized nanocomposites exhibit dual functionality, highlighting enhanced photocatalysis and antioxidant activity, offering promising applications in environmental remediation and therapeutics. The process involves meticulous biosynthesis and PVP-mediated surface modification, confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and UV–vis analysis. Both Fe2O3/Fe3O4 NC and Fe2O3/Fe3O4@PVP NC show spherical morphologies with average sizes of 21.7 nm and 30.1 nm, and optical bandgap energies of 1.8 eV and 1.34 eV, respectively. Photocatalytic activity assessments against amoxicillin antibiotic degradation under solar irradiation highlight the superior performance of PVP-modified nanocomposites, achieving an impressive 99% removal efficiency in 50 min compared to 84% for Fe2O3/Fe3O4 NC. Kinetic investigations reveal rate constants of 0.021 min− 1 and 0.0025 min− 1 for PVP-modified and unmodified nanocomposites, respectively, emphasizing the enhanced degradation rates. Optimization studies showcase the mass-dependent efficiency, with PVP-modified nanocomposites achieving a remarkable 91% removal rate of amoxicillin with a 7.5 mg catalyst. The recycling performance demonstrates sustained efficacy over five consecutive cycles, with only a slight decline from 99 to 97.5%. Moreover, the nanocomposites exhibited significant antioxidant activity, with Total Antioxidant Activity (TAC) values of 5.5 and 6.86 mg GAE/mg sample for Fe2O3/Fe3O4 NC and Fe2O3/Fe3O4@PVP NC, respectively. The environmentally synthesized PVP-modified Fe2O3/Fe3O4 NC showcases promising dual functionality, making them versatile candidates for efficient pollutant degradation and antioxidant applications in environmental and therapeutic domains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cluster Science
Journal of Cluster Science 化学-无机化学与核化学
CiteScore
6.70
自引率
0.00%
发文量
166
审稿时长
3 months
期刊介绍: The journal publishes the following types of papers: (a) original and important research; (b) authoritative comprehensive reviews or short overviews of topics of current interest; (c) brief but urgent communications on new significant research; and (d) commentaries intended to foster the exchange of innovative or provocative ideas, and to encourage dialogue, amongst researchers working in different cluster disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信